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Task Topic: Biomechanics Analysis of Self-Induced Mechanical Shocks 

Task Subject: Biomechanics 

No of Words: 8000 

Task Instructions: The present project will set out to utilise the MATLAB and an open-

source OpenSim package to visualise the trajectories of the human body (kinematics) and 

ground reaction forces and moments (kinetics) from a dynamic sitting experiment. The aim of 

the project is to quantify the dynamic forces and moments during the sitting motion of the 

human subject.  

Objectives:  

-Use Matlab for dynamic data and dynamic movement simulation.  

-Prepare the data for using Matlab to integrate with OpenSim simulation.  

-Conduct inverse kinematics and dynamics analysis in OpenSim  
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ABSTRACT 

Dynamical simulations play an important role in tackling tough engineering challenges and 

can influence the decision-making and treatment approaches. In this post, we are creating a 

new interface between the two software tools to combine the MATLAB/fast simulator 

models, controller systems and powerful digital capabilities with OpenSim simultaneously 

and human motion dynamics. The MATLAB S-function technique is used for OpenSim to 

integrate with Simulink, and both open loop and lock loop systems display the interface. (D. 

A. Winter, 2009. ) 

The initial research focuses on developing static equalization equations and models for the 

calculation of forces and pressure on the body, implementing these models in the MATLAB 

software to be easily integrated into current software for biomechanical simulation and 

developing a user interface that will allow clinicians to report relevant data. To far, the 

MATLAB code has been developed to represent the human body as rigid body segments, 

utilising average data from several individual investigations. The code is entered into to 

indicate a possible wheelchair user's orientation in the wheelchair with the height and weight 

of the potential user. The code is used. (D. A. Winter, 2009. ) 

When MATLAB/Simulink is used in the open-loop system as a distinct reproduction for the 

OpenSim Forward Dynamics Tool, the shut-off mechanism provides a unique functionality to 

OpenSim which is required for the majority of human movement simulations. In both open-

loop and clos-loop instances, an example of arm model was employed effectively. This 

project is intended to undertake a basic biomechanical analysis of the human body when 

seated and to apply this analytic especially to disabled people. (D. A. Winter, 2009. ) 

The study is initiated to produce static equilibrium equations and models for the calculation 

of body forces and pressures. The implementation of these models in MATLAB software will 

allow them to easily be incorporated in the current bio-mechanical simulation software. Up to 

now, MATLAB codes were designed as hard parts of the human body utilising data averaged 

over numerous investigations. The code is entered into to indicate a possible wheelchair 

user's orientation in the wheelchair with the height and weight of the potential user. (K. 

Waugh and J. M. Bach, 2019) 

The code gives an imagery of the user and the pointing forces connected with postural 

supports which operate on him or her. Future work involves removing the assumptions 

provided in the model and implementing the concept in OpenSim software. The given context 

offers a strong and versatile technique for effective musculoskeletal movement control 

simulations utilising OpenSim and MATLAB.. This could make predictive modeling more 

easily used by researchers as a means to treat clinical problems which restrict human 

movement. (Tilley, 2018) 
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1. INTRODUCTION 

Many neuromusculoskeletal components interact to allow coordinated movement. Human 

movement-fascinated scientists have carried out significant investigations to explain these 

components. As such, the mechanic, geometric link between muscles and bones and joint 

movements are distinguished by a multitude of data. A neuromuscular excitation patterns and 

the motion kinematics of thousands of patients, both before and during treatment operations, 

have been studied by clinicians who treat motion defects in people with brain paralysis, a 

stroke, arthritis and Parkinson's condition. However, it remains an essential task to synthesize 

thorough descriptions of neuromusculoskeletal system elements with measures of motion to 

build an integrated knowledge of normal movement and to establish a scientific foundation 

for rectifying anomalous movement. (Dan., 2017)   

Yet, a key issue remains the synthesis of precise descriptions of the parts of the 

neuromusculoskeletal system and measures of movement to develop an integrated knowledge 

of normal motion and to provide scientific foundations for the correction of aberrant motion. 

This research is focused on the development of static equalization and models for strength 

calculations and pressure on the body. These models can easily be integrated in the current 

biomechanical simulation software by means of the MATLAB software and the development 

of an interface to allow clinicians to report data. The MATLAB code has been built as a rigid 

body sequence to depict the human body using average data from several individual studies.. 

This code shows a possible wheelchair user orientation in the wheelchair with the probable 

user's height and weight. You are using the code. (Dan., 2017) 

Two basic limitations exist when using experiments alone to understand motion dynamics. 

Firstly, in experiments, key factors, such as muscular forces, are not typically quantifiable. 

Second, in complex dynamical systems only from experimental data, it is difficult to establish 

cause/effect correlations. As a result, it is not easy to clarify the muscle activities. (Ethan, 

2017) 

Electromyography (EMG) captured recordings for example may show when a muscle is 

active, but analysis of EMG not allows one to establish which bodily movements are caused 

by the activities of a muscle. It is difficult to determine how specific muscles contribute to the 

observable movements since a muscle may accelerate joints and not connect the body 

segments. In combination with studies, a theoretical framework is needed for discovering the 

principles that regulate the coordination of muscles during normal motions, determining the 

contribution of neuromuscular deficits to aberrant movement and the functional implications 

of therapy. The theoretical framework must disclose connections of cause-and-effect between 

neuromuscular arousal patterns, muscle forces and body movements to achieve these 

objectives. The research has begun to generate static balance equations and models for body 

forces and pressure calculations. These models are simply integrated in the present software 

of bio-mechanical simulation through the installation of the MATLAB program. MATLAB 

algorithms have previously been built as hard components of the human body that use 
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averages data from various studies. The code is input for a prospective wheelchair user 

orientation with the height and weight of the potential user in the wheelchair (Kwak, 2019) 

Such a framework is provided by a dynamic motion simulation that incorporates models that 

describe the anatomy and physiology of the parts of the neuromusculoskeletal and multi joint 

movement mechanics. Muscle-driven dynamic simulations supplement experimental 

techniques by evaluating crucial, experimentally challenging variables, such as muscle forces 

and joint forces. Simulations also identify causation-effect correlations and let 'what if?' 

experiments to be conducted which, for instance, can change the muscle's excitement pattern 

and watch the subsequent motion. Although it is well known the importance of dynamic 

movement simulations, the area is fragmented. Many labs build their own simulation 

software, therefore it is impossible to utilize or assess this simulation outside the lab, where it 

is developed. It is tough to evaluate this program. The failure to deliver results is a key 

constraint on the advancement of biomedical simulation science. (Noah, 2018) 

Simulation technology has been elegantly supported by individual researchers, including the 

development of new methods for modeling muscles, simulating contact and showing 

muscular skeleton geometry, but it is difficult for others to use those new techniques because 

software is generally unavailable. Since software tools are not publicly available to support 

muscular skeletal dynamic simulation development, analysis and control, researchers usually 

need to invest much money developing and building tools to study each new simulation. 

(Riley., 2017) 

The production of dynamic movement simulations is technically difficult and many 

movement science laboratories lack the funding or technical competence to produce their 

own simulations. These circumstances represent an important obstacle to the advancement of 

simulation technology and the scientific capacity of muscle skeletal simulations. Delp and 

Loan created in the early 1990s a musculoskeletal modeling system, dubbed the SIMM, 

enabling users to build, modify and assess many various architectures of musculoskeletal 

structures. Hundreds of biomechanics researchers currently utilize this software to develop 

computer models of musculoskeletal systems and to mimic motions like as walking, cycling, 

ride and escalation. SIMM was used to construct models of both the lower and upper ends to 

investigate biomechanical effects of surgery, including tendon surgery, osteotomy, and 

complete joint replacement. In order to quantify the muscle-tenderon lengths, speeds, arms 

momentum and acceleration during normal and pathologic walking, a lower extremity model 

was utilized. (Tilley, 2018) 

Studies have been carried out to study the treatment of people with a spinal cord injury, the 

analysis of joint mechanics in pain patients, calculating knee forces in running and cutting 

and to explore the effect of foot placement and compliance with the joint on ankle strains. 

These investigations proved the usefulness of musculoskeletal models and dynamic 

simulations in the analysis of the causes and consequences of gastric anomalies. SIMM has 

assisted simulate researchers who built frog, tyrannosaur, cockroach and other animal 

computer models (Tilley, 2018) 

. 
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Figure 1 OpenSim Scheme, Software of Open Source  

 

OpenSim schema, an open source software framework for neuromusculoskeletal systems 

modeling, simulations and analysis, OpenSim is constructed on the top of key computational 

components that allow movement equations to be derived, numerically integrated, and 

restricted non-linear problems to be solved. Additionally, OpenSim gives access to control 

methods, for example, computed muscle control, actuators such as muscle and contact 

models as well as analyses of accelerations caused by muscles, for example. OpenSim 

incorporates the components into a platform for modeling and simulation. By developing its 

own plug-ins for analysis or control or for representing neuromusculoskeletal components 

such as muscle models, users can enhance OpenSim. The user has access to a set of advanced 

tools to inspect models, to change muscles, plot results and other tasks on a graphical user 

interface. (Wade., 2019) SimTrack, one of the tools OpenSim, allows for precise muscle-

driven simulations representing the dynamics of each subject. On Simtk.org, OpenSim is 

created and maintained; all software is provided free of charge. While SIMM helps to 

construct models of the musculoskeletal system and dynamic movement simulations, it does 

not help calculate the muscle stimuli that cause coordinated movement and has limited 

capabilities to analyze outcomes from dynamic simulations. In addition the complete access 

to source code for SIMM and other business packages, such Visual 3D C-Motion Inc., 

Anybody Technology or Adams MSC Software Corp., makes it difficult for biomechanics 

researchers to increase their capabilities. During the last 10 years, new methodologies for 

software engineering have developed, allowing the construction of more expandable software 

systems. This is a chance to build a simulation platform involving a larger range of 
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biomechanics. In order to expedite the creation and sharing of simulation systems and to 

better integrate dynamic simulation in movement research. The development of open source 

software has become an excellent approach for both business and academic activities, e.g. the 

operating system Linux. Making accessible source code allows researchers, by making 

modifications and adapting code to fit their needs, to duplicate results produced by other 

laboratories. (Tilley, 2018) 

Modern plug-in technology that we have implemented allows users to increase program 

capabilities and make it easier to share new solutions. We think that via an open-source 

initiative, the biomechanics community will benefit from an increase in collaboration. The 

first development workers need to offer the tools that others may use and expand to help 

build and test open-source software. OpenSim offers two of them. The first consists of a 

series of modeling and analysis instruments comparable to the SIMM tools. Second, 

SimTrack, allows researchers to produce dynamic movement simulations of motion 

collection data. (Ethan, 2017) 

A brief summary of OpenSim is the first thing in this report. We focus on SimTrack and how 

simulations that describe each patient's dynamics might contribute to the treatment approach. 

A technique is presented and a case study is done using a dynamic simulation of a patient 

with stiff knee gait, through which the underlying reasons of the patient's aberrant movement 

as well as the implications of various therapies are understood. Finally, we look at the 

problems in the field. (Ethan, 2017) 

2. Objectives and Aims 

The research aims to measure the moment and dynamic forces of the human subject while 

sitting. And this initiative has further goals; 

➢ Mat LAB stimulation of dynamic data and movement 

➢ Mat LAB data development and OpenSim stimulation data integration  

➢ Reverse film and dynamic analysis conducted in OpenSim (Dan., 2017) 
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3. LIERATURE REVIEW 

 

3.1 OPEN SIM 

OpenSim is an open source platform for neuromuscular skeletal system modeling, simulation 

and analysis. It contains low-level computer tools that a program invokes. A graphical user 

interface offers access to the essential features. A growing group of people is developing and 

maintaining OpenSim on Simtk.org. Simtk.org provides as a public resource for data, models 

and computational instruments for biological structure modeling based on physics. The 

program is ANSI C++ written and the graphical user interface has Java, which allows 

OpenSim to build and execute with common platforms. For some fundamental functionality, 

Open-Source third-party tools like Xerces Parser from the Apache Foundation for reading 

and writing XML files (xml.apache.org/xerces-c) and the Kitware Visualization Toolkit are 

utilized (www.vtk.org). Using the plug-in approach, computational components like dynamic 

engines, integrators and optimizers may be upgraded without major restructuring as 

necessary. For example, OpenSim is presently using SD Fast as the dynamic motor 

(Parametric Technology Corp.); but, future versions will let Simbody TM to also be utilized. 

Simbody TM is a developed, open-source dynamics motor at Simtk.org (Ethan, 2017) 

.  

 

 

Figure 2. OpenSim display, the lower extremities, upper extremity and the neck may be loaded, examined and 

analyzed on models of various musculoskeletal structures. Muscles are displayed as red lines; blue spheres are 

depicted as the virtual mark 

OpenSim's plug-in design enables users to expand their own muscle models, touch models, 

controllers and analytics. For example in OpenSim there are around one dozen analytical 
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plug-ins written by different users. These tools compute joint forces, accelerations generated 

by muscles, muscle forces and other factors. These analyses are designed for several models 

of the musculoskeletal, but they may be used in general with any OpenSim model. The 

OpenSim plug-in design thus offers the biomechanical community a way to quickly distribute 

new capabilities. A new C ++ class (e.g., Induced Acceleration) from the suitable basic class 

(e.g., Analysis) must be added to the complement, a number of methods necessary must be 

implemented, and a class should be compiled into a dynamically connected library, the new 

plug-in may be utilized for simulations and shared with other users (e.g., Induced 

Acceleration Analysis). Plug-ins can also be built to improve the functions of the graphical 

user interface on their own. Almost all functionality from plug-ins comes through the user 

interface. The modules for viewing, charting and modifying of movements, for example, are 

all plug-ins. (Ethan, 2017) 

Other users will have a user interface plugin example. The OpenSim graphical user interface 

offers toolboxes for the creation, generation and visualization of musculoskeletal models. A 

large part of Simm's functions, such as handling joints and editing the muscles and the 

variables of the plot, will become available in OpenSim. Furthermore, you may import SIMM 

joint (*.jnt) and muscle (*.msl) files. OpenSim offers non-SIMM simulation and control 

capability. In specifically, SimTrack is a tool able to quickly and correctly generate muscle-

acted simulations of subject-specific movement as stated above. (Tilley, 2018) 

3.2 SIMTRACK: AN OPENSIM DYNAMIS GENERATING TOOL 

In order to create a muscular movement simulation, a dynamic model of the muscle skeletal 

system and its environmental interactions must first be created. Models comprising a series of 

differential equations describing muscles, muscles, skeleton and segmental dynamics are used 

for the constituents of the musculoskeletal system. These equations define the muscular-

skeletal system's time-dependent conduct in response to neuromuscular excitement. The next 

stage is to identify a pattern of muscle excitations which produces a coordinated movement 

when a dynamic model of the musculoskeletal system is formed. (Pandy, 2018) 

A solution to an optimization issue can be achieved by defining the purpose of a motor task 

(e.g., to leap as high as possible) or to drive a dynamic model to "follow" experimental move 

data. Simulations are usually assessed by how well they are in agreement with kinetics, 

kinetics and EMG patterns empirically recorded. Once a simulation is made and its 

correctness is validated, the contribution of a muscle to bodily movements and the impacts of 

a simulated therapy may be analyzed. The identification of a collection of muscle excitations 

that lead to coordinated movement is one of the biggest problems in dynamic simulations. 

Historically, the expense of producing co-ordinated movement simulations in muscles has 

been significant, with computer times taking days, weeks or months. Recent developments 

have substantially decreased the time required to produce such simulations in the application 

of robotic control systems for bio-mechanical simulation. (Byrd, 2018) 

The computed muscle control technology for example determines muscle excitation that 

replaces observed pedaling dynamics in about ten minutes. This is quicker than traditional 

dynamic optimization methods than two orders of magnitude. This method, developed by 
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Thelen and Anderson, led to a 22-degree freedom 91 muscle model to follow the 

experimental data of ten individuals in health. Their approach included calculating muscle 

excitation patterns. In around 30 minutes, a simulation of half a gait cycle was created. The 

speed of this approach enables a broad range of motions to be generated with precise subject-

specific simulations. (D. A. Winter, 2009. ) 

 

 

 

Figure 3Methods to construct a musculature movement simulation with SimTrack. The inputs include a dynamic 

muscular skeleton model, experimental kinematics and the experimental reaction force and moment of the subject. x-

y-z marker data, joint centers, and joint 

➢ Experimental kinetics is utilized in step 1 to measure the musculoskeletal model in 

order to match the topic dimension. 

➢ In step 2, the problem of reverse movies (IK) is resolved to determine the joint angles 

of the model best for experimental filmmaking. 

➢ A RRA (residual reduction algorithm) is employed in Step 3 to modify the model 

kinetics so that it conforms to the experiential response forces and moments more 

dynamically. 

➢ In Step 4, a CMC algorithm serves to detect a collection of muscle excitations that 

produce a forward dynamic simulation that closely matches the subject's movements. 

Dynamic simulation may be created in four phases via SimTrack As an input, SimTrack uses 

a dynamic model of the musculoskeletal system and testing of movie and reaction forces and 

moments. Although this is a generic method, we discuss it as part of gait simulations, as this 

is one of the more demanding applications. Step 1 sets up a model of dynamic muscular 

skeleton (such as a model of SIMM) to fit an individual subject's anthropometry. (Dan., 

2017) 

 The dimension of each segment of the model in the body is scaled depending on relative 

distance from a motion capture system between pairs of markers and the corresponding 

virtual marker positions in the model. The mass characteristics of the bodily segments are 

proportionately reduced to replicate the total mass measured by the individual. Muscle fiber 

lengths and tendon lengths are scaled to remain the same proportion of the whole actuator 

duration. (Dan., 2017) 

Step 2 solves an issue using reverse kinematics (IK) to establish the model of generalized co-

ordinates (joint angles and translations) that reproduces best the raw marker data derived 
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from movement capture. Step 2 is framed as a minor problem which minimizes 

discrepancies, subject to joint restrictions, between the measured marker sites and the model's 

virtual marker sites. If a set of joint centers or joint angles created by motion capture software 

are incorporated into experimental kinetics, these may also be included in the formulation. 

The reverse kinematics challenge is therefore to minimize the weighted squared error on each 

frame in experimental kinematics: (Kwak, 2019) 

 

 

As a result of experimental errors and modeling assumptions, the observed ground response 

forces and moments frequently differ dynamically from model movies. In step 3, a residual 

reduction algorithms (RRAs) are performed in order to make the models more dynamically 

compatible with their measurement of ground reaction forces and moments in generalized co-

ordinates (joint angles and translations). The following equation in Newton's second law 

covers the determined ground response strength and gravitational acceleration with body 

segment acceleration (Kwak, 2019) 

                                                             

A comparable equation covers the instant of the soil interaction with the cinematic model and 

the rest. The residual force should be zero in the absence of experimental and modeling error. 

This is never the case in practice. With the combination of tiny controlled disturbances of the 

motion path and small modifications of the model's mass parameters, the residual forces and 

times for dynamic consistency may be reduced. The residues are computed and averaged 

across the period of the motion in order to decrease the remaining forces and moments. For 

example, the calculated muscle control technology determines a muscular excitement which 

takes around ten minutes to replace the observed pedaling dynamics. This is faster than two 

magnitude orders than standard dynamic optimization approaches. This technique, created by 

Thelen and Anderson, resulted in a ninety muscle model thirty two degrees freedom, which 

follows the experimental data of twenty healthy persons. Their technique involved calculating 

the patterns of muscular arousal. A simulation of a half-stroke cycle was developed in around 

twenty five minutes. The speed of this method allows for accurate object-specific simulations 

to produce a large number of movements (D. A. Winter, 2009. ) 

The algorithm proposes modifications in the model mass parameters such as the position of 

the center of the trunk mass, which lower the average residual value over the time of 

movement, based on such averages. After all mass parameters have been changed; a control 

problem with all degrees of freedom in the model is solved. The joints are controlled by 

idealized joint times in particular and, in addition, a chosen model segment is controlled by 
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the six degrees of freedom between the model and the ground by three residual force and 

three residual time (i.e., three translations and three rotations). If the residues are not limited, 

the movie industry can be traced by little or no mistake. At the user's option, however, the 

magnitude of the residue can be set at upper bounds, whilst the model movement is adjusted, 

resulting in a new set of movies that dynamically conform to the limited residues. To spread 

tracking faults via joint angles a performance test is employed (Noah, 2018) 

                                      

The results of the residual reduction technique are utilized for the model levels of freedom 

and mass characteristics in Step 4. Step 4 uses CMC to generate a sequence of muscular 

excitations that form a co-ordinated simulation of the movement of the subject, which is 

driven by muscle. A static optimization criterion is used to distribute forces through 

synergistic muscles and proportional derivative control in order to provide a forward dynamic 

simulation that closely monitors the film industry produced in step 3. Although the entire 

status equations defining muscle activation and contraction dynamics are utilized as a static 

performance criterion, they are integrated in the forward dynamic simulation. Activation 

dynamics are modeled on the temporal rate of change in muscular strength and excitement 

(Coleman, 2020) 

                                        

A lumped parameter model describes the contraction dynamics in the musculotendon, which 

account for the muscle's strength-length-velocity properties and the tendon elastic 

characteristics. The rate of change of muscle length is especially linked to muscle length, 

length of the actuator of muscular tendon and activation of the muscle. (Tilley, 2018) 

 

Our current technique does not simulate the strength between the foot and the ground but 

instead directly applies the observation of the ground reactions forces and moments. The 

spring damping elements are given between foot and ground in the analysis to allow the 

reaction forces to adapt to disturbances, as explained in the case study below. (Pandy, 2018) 

4. METHODOLOGY/ EXPERIMENTS / DESIGN 
Biomechanical study of the human body was performed in different seating postures by 

creating free body diagrams. This enabled the strengths of the supports to be implemented 

and computed using the following equations:  

∑𝐹𝑥 = 0 

∑𝐹𝑦 = 0 
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∑𝑇𝐴 = 0 

Where  

Fx= force in x direction  

Fy= force in Y direction 

TA= torque of an arbitrary point in the model 

4.1 Model of Body Segment  

In order to depict the complete corps, the body must be divided into rigid body parts and 

drawn as direct lines. The segments of the corps were: the skull, the chest, two uppers, two 

forearms, two hands, two thighs, two shanks and two feet. The length, position, weight and 

COG placement of each body section were its own. The length and position of each body 

segment were estimated as a share of the human body's overall height entered in the model. 

Thus, the body segment lengths and positions of a fifty percent man were divided by eight 

percentages by a fifty percentile male in total (Ethan, 2017) 

 

 

Figure 4(a) 50th male percentile side view, (b) male 50th percentile front view 

The information from the widely regarded book The Measure of Man and Woman: Human 

Factors in Design, for the lengths and places of the body of a fifty percent male was derived. 

(Kwak, 2019)Figures four (a) and four (b) provide a schematic of the fiftieth percentile man 

in this book. The weight of each segment has been computed as a percentage of the body's 
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entire weight, whereas the COG position has been calculated as a percentage of every 

segment's length from the proximal end. The body must be split into stiff sections of the body 

and represented as direct lines in order to represent the entire body. The body was divided in 

sections: the cranium, the thighs, two uppers and two forearms, two hands, two thighs, two 

shanks. Each body part has its own length, location, weight and COG placement. As a part of 

the total human body height input in the model, the length, location of each section of the 

body was calculated. Thus, the lengths and locations of the body segment of a thirty percent 

male were split by nine percent by a forty percent male. (Pandy, 2018) 

 

 

Figure 5Relative anthropometric data on body segments and COG locations 

 

4.2 Modeling Software (MATLAB)  

This biomechanical analysis was carried out using a number of software tools. OpenSim was 

a student of both academics and Bio pathology students at the University of Ohio who 

initiated the study on a simple biomechanical 3D software program. This software has caused 

problems, however, because OpenSim is best used for modeling human body dynamics to 

model and forecast joint torques and muscle activation in the body, rather than to detect static 

external forces on the body as a result of other body pressures. (Noah, 2018) 

MATLAB was also studied because of its significant use by engineering studies and 

academics at The Ohio State University. MATLAB is an easy to use programming language, 

which enables numerous operations to be carried out fast and efficiently. On the MATLAB 

website, Math Works, the developer, says: "MATLAB is tailored for addressing engineering 

and scientific issues, Anthropometric data on relative masses and COG sites in the body 

segments. MATLAB is the most obvious means of expressing computer mathematics 
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worldwide. Integrated graphs allow the visualization of data and the obtaining of insight." It 

was chosen to utilize MATLAB for the modeling of the human body, as it had the straightest 

interface and all the instruments required for external force calculation. (Dan., 2017) 

4.3 Description of MATLAB Code 

For this study, the final code of the MATLAB, as listed in Annex A, was divided into two 

views of the body: the lateral view which modeled the coil, backrest and base and the front 

view allowing the coil, footrests and support for the sides of the trunk to be modeled. Both 

scripts have been executed with inputs of the overall person's height and weight and 

particular joint angles that the program user wanted to see the body. The angle at the pelvis, 

knees, ankle, shoulder, elbow and wrist were part of these joint angles. Inputs to both the 

sagittal angles of the plane (side view) and to the frontal angles (front view) were 

incorporated in the pelvis and on the shoulders. (D. A. Winter, 2009. ) 

4.4 OpenSim-MATLAB interface 

With the OpenSim API, OpenSim was interfaced with MATLAB. MATLAB serves to 

address issues with optimization and OpenSim represents musculoskeletal system dynamics. 

For multi body dynamics and other numerical processes OpenSim itself relies on the 

Simbody dynamics engine. On the block in Fig. 6 called the "State Derivatives," which match 

with Euler discretionary scheme given by Eq, is the crucial link between OpenSim and the 

MATLAB, OpenSim for a specific collection of discreet states and controls by evaluating Eq. 

The fi+1 vector term values in Eq. may be determined. If the value of the target function 

requires the magnitude of any amounts which are implicit functions and controls, for example 

contact forces, muscle powers, they may also be acquired from MATLAB by using the 

corresponding OpenSim methods. (Wade., 2019) 

. 
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Figure 6 OpenSim, MATLAB interface with direct collocation for the solution of optimum check issues. 

MATLAB and OpenSim are communicated using the OpenSim API. The green boxes reflect 

MATLAB's optimization process. The blue boxes indicate OpenSim's computer processes. 

Files input and output are shown in the yellow boxes. The "state Derivatives" green-blue box 

symbolizes the discretion in the approach to direct communication. In the OpenSim graphical 

user interfaces the original guess and the optimum outcome may be viewed. (Kwak, 2019) 

The first guess for optimization settings is found in two files called Initial Status.sto and 

Initial Controls.sto in from OpenSim storage (.sto). The optimization findings are written in 

into two comparable files, Optimal Status.sto and Optimal Controls.sto. In the OpenSim 

graphical user interface, beginning devices and end outcomes may therefore be easily seen 

(GUI). Optionally, intermediate outcome files can be produced to enable an intermediate 

motion in OpenSim GUI as optimization continues. The storage files with final findings make 

it easy to do the forward dynamics simulations using the OpenSim Forward Dynamics tool 

based on the DC results. Further simulations in the Optimal States are produced utilising the 

states from the previous time. This file from every time point in the Optimal Controls as 

beginning conditions and the muscle excitations. As controls, store files. (Ethan, 2017) 

5. Results / Findings 
Test of weight the scale beneath the underside was 124.8 pounders when the participant's 

arms were completely extended, while the scale below the participant's feet was 45.4 pounds. 

The scale below the underside was 135.4 pounds, whereas the scale below the participant 

read 28.2 pounds, when he had his arms hung by his sides. The COGs of the hands were 

positioned under the feet over a scale while the participant's arms were completely extended. 

These outcomes permitted: Test configuration with fully extended arms and scale underneath 

the subject. Determined which supports weight of the specific body support in the position of 
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the COG of a segment of the body not in direct touch with a support. The computation of the 

strength from footstool will include the weight of the hands if, for example, the COGs on the 

hands of the modeling body are situated above the footstool. (Pandy, 2018) 

5.1 MATLAB Program Output  

By entering the value at the command window of MATLAB for easy reading the output of 

MATLAB codes gives the user of the program the numerical values for points connected 

with each support. Furthermore, on a plot with grid lines, a graphical representation for the 

body's free diagram at the input position represents the special co-ordinates of each body 

segment. Figure 8 marks the following caption, which defines each symbol in the output 

plots: (Kwak, 2019) 

 

Figure 7Legend for MATLAB free body diagrams. 

 

5.2 Case Study 

We utilized a basic first degree-freedom (DOF) model consisting of a block acting on by two 

muscles to show the technique utilising the OpenSim-MATLAB interface, resulting in a 

model with six states and two controllers Fig. 2A. This model may translate along the medio 

lateral Z axis of Fig. 2A because the two muscles, the one pushing the other in a negative 

direction, act on them. From the Tug of War.osim example supplied with OpenSim was 

changed the simple pattern. The block has 6 DOF and 5 restrictions to generate uniaxial 

sliding in the original example model. In order to alleviate the limitations and decrease the 

state space, we have replaced the 6 DOF free joint with a first DOF slider joint. We have also 

adjusted the slack lengths of the tendon from the example such that the muscles function 

closer to the strength-length curve plateau for the simulated movement task. The muscles had 

a maximum isometric strength of 1000 N for this investigation, an optimum fiber length of 

0.251 m, 0.051 m slack tendon longitudes and 0° cleavage angles. (Tilley, 2018) 

. 
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Figure 8this project uses OpenSim models. 

 

Predictive simulations were created in which the goal motion for the block should begin at 

rest from −0,08m in the mediolateral axis, translate to a position of 0,08 m in half of the 

period of movement, and return to its original condition over a total time of 1,0s. Apart from 

these task restrictions at the first time, midpoints and the end time, the actual movement was 

not specified. Other limitations were imposed in order to ensure that states and controls were 

in line at the original time. The aim was to minimize the sum of the integrals of square 

muscle activation (Blake, 2019) 

 

 

The number of muscles is where ai is immediate activation of the ith muscle and m. In a 

variety of grid densities, 25–501 nodes addressed the NLP issue (25, 51, 101, 151, 201, 301, 

401 and 501 nodes). Solutions for all grid densities and for fmincon (interior-point method) 

up to 201 nodes were achieved for IPOPT. In order to deal with such a tiny question, the 

calculated duration of fmincon on the denser grids was too long (>1 day). (D. A. Winter, 

2009. ) 

An initial estimate was created when the model started statically in the original 0.0 m location 

with the 1.0 s forward simulations and did not move, because the muscle controls were both 

set to zero. This is called the "static" initial assumption. With IPOPT, two alternative 

approaches had been addressed for the NLP problem: one utilising a grid refinement 
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technique using a static starting device for all grid densities. For fmincon, the NLP problem 

was handled only with grid refining, as convergence with the static initial estimate was too 

slow. The original estimate for a given grid density was that from the next lower (that is to 

say, coarser) grid density a solution was achieved, with the exception of the 25 node grid 

where there was no lower grid density. For example, with the static starting estimate and with 

an ideal outcome for the 51 node grids, the 101 node case was resolved. We've always 

utilized an unusual amount of nodes for this specific movement job because of the mid time 

limitation. For the 25 nodes, 200 unknowns and 156 restrictions were present, but for the 501 

node example, 4008 unknowns and 3012 restrictions were present. The solutions were 

evaluated by a comparison of results from the different grid densities and by comparing 

results with future simulations at each grid density based on optimum controls and ideal 

beginning conditions derived from the DC optimizations. (Riley., 2017) 

In order to assess the causes of their aberrant walking pattern and model therapy possibilities, 

we have developed dynamic simulations of individual patients with abnormal gait utilising 

calculated muscle control. This case study shows how simulations may give us a sense of the 

factors that generate steep knee gait, which significantly diminishes swinging-phase knee 

flexion. (Riley., 2017) 

Reduced knee bending is typically due to increased excitement of the femoris rectus during 

the swinging phase. However, variables such as excessive strength in vasti or rectal femoris 

or reduced power in iliopsoa or gastrocnemius that restrict knee bending speed just before 

swinging can also help to minimize knee flexion during swing. It is hard to establish which of 

the variables restrict the knee bending of a person as present techniques of diagnosis cannot 

assess how pressures created by rectum femoris or another muscle impact knee movements of 

swing-phase. The therapy of steep knee gait has various possibilities. Theoretically, injecting 

botulinum toxin reduces the moment of hip and knee caused by rectus femoris. Determined to 

sustain the weight of the particular body support in the COG position of a segment of the 

body not directly related to the support, For example, when the COGs on the modeling body 

are located on top of the footstool, the calculation of the strength from footstool should 

include the weight of hands. (Dave., 2018) Weight test when the participant's arms were fully 

extended, the scale below the underground was 124.8 pounders, with the participant's feet 

below 45.4 pounds. The bottom scale was PL 135.4 while the bottom scale read PL 28.2 

when the subject had his arms hung at his sides. The hand COGs were positioned over a size 

below the feet while the arms of the subject were stretched fully. These results allowed for: 

Test setup and scale below the person with fully extended arms. A second alternative, the 

transfer of rectum femoris, reduces theoretically the moment of muscle extension while 

maintaining its moment of hip bending intact. At present the processes that enhance the 

swing-phase knee bending of patients are not fully known following these therapies. In this 

case study, the biomechanical reason of his declining knee flexion and the possible 

implications of alternative treatment options were created and assessed using dynamic 

simulations of the stiff-knee gait subject. (Dan., 2017) 

A 12-year-old male with spastic paralysis was diagnosed. The topic, during swing and 

aberrant activity of the femoris (preswing & swinging) and the vasti the lower left leg showed 



21 

 

restricted knee flexion (preswing). The musculoskeletal system of the individual was 

represented by a scaled, 21° freedom connection, which was operated by 92 muscles, and we 

produced a dynamic forward simulation. The measured knee flexion angle of the individual 

was recreated at 2° using a simulated joint angle. By changing the muscle excitations in the 

simulation and calculating the resultant changes in peak bending, we assessed rectal femoris, 

vastial, and other muscles' contributions to knee flexion. Analysis of this dynamic simulation 

showed that the main cause of the stiff-knee-gout was excessive knee extensor activation in 

preswing, reducing rectus femora’s or vasti stimulation during preswing, significantly 

increasing peak knee bending. Reducing rectal femoral excitement in the early swing had a 

minimal influence on peak knee bending (Coleman, 2020) 

 

 

Normal walking simulation has enabled researchers to discover the activities of muscles that 

exceed knowledge acquired via experimental approaches by means of a degree of precision 

and confidence. Aberrant walking simulations have the same potential, but in part they are 

difficult to build since they need to determine muscles that cause the abnormal dynamic of 

motion that people with movement disorders experience. The calculated muscle control 

technique gives a computer efficient way to produce these simulations and is currently 

available worldwide for academics. (Wade., 2019) 

6. Discussion 
Researchers have used the MATLAB interface to build a novel framework to resolve 

optimum muscular control challenges with the OpenSim API. The fmincon solver also solved 

the basic model optimum control issue, but the calculation time was too long to be generally 

useful. We seek to facilitate the use of predictive biomechanical models to tackle clinically 

relevant human mobility problems. MATLAB is effectively coupled with OpenSim 

musculoskeletal Modeling, Simulation and Analyze tools for the high programming, design 

and management capacity. With this in mind, the direct collocation approach has solved two 

forecast problems: a recurrent movement problem with a fundamental musculoskeletal model 

and a discrete motion problem based on the lower limb model that is more realistic. Both 
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problems with acceptable computing requirements were resolved using an IPOPT solver. The 

fmincon solver could also solve the basic model optimum control issue, but the calculation 

durations were too lengthy for widespread application. Our objective is to allow use of 

predictive biomechanical simulation to solve challenges of human mobility that are clinically 

relevant. (K. Waugh and J. M. Bach, 2019) 

6.1 Biomechanics Simulation Opportunities and Challenges 

We think simulations will improve the science of movement through exchanges between 

modelers and experimenters. Experimentalists are required by modelers to obtain parameters 

used in simulations and to check the correctness of simulation findings. Experimentalists 

need to build models in order to evaluate experimental observations and acquire perspectives 

from the abundance of biomechanical experimental data. (Noah, 2018) 

Biomechanical researchers are now able to build a quantitative, causative-effect relationship 

between the neuromuscular excitation patterns, muscle forces, external reaction forces and 

movements of the body that are observed in the lab by accessing open-source software to 

develop and analyses muscle-driven simulation. In combination with high-quality 

experimental observations, simulations can assist to understand the interactions between parts 

of the Neuromusculoskeletal System and the results of therapy for people with motion 

problem. (D. A. Winter, 2009. ) 

A number of software programs have been used to develop and analyses models for the lower 

extrem, higher extrem, cervical spine, lower back and other components of the 

musculoskeletal. Although these models are implemented in various modeling software, the 

model parameters are comparable. One difficulty is to create modeling standards and 

encourage the exchange of modeling packages. (D. A. Winter, 2009. ) 

Another difficulty is to show that using simulations may enhance therapy results for people 

with mobility problems. The possibility to better understand the reasons of movement 

aberrations and the treatment choices using subject-specific simulations is intriguing, and the 

above case study offers unique and important insights about rigid knee gait for one patient. 

Future investigations in order to evaluate if the principles for treatment planning can be 

explained through insights acquired from analysis simulations are required in order to carry 

out simulations for a number of individuals. Studies that compare predictions of subject-

specific simulations retrospectively with the actual results of individuals are also needed to 

assess if current muscular-skeletal models are accurate enough and to determine criteria for 

the application of the results of simulations. The open-source simulation platform we have 

developed allows such extensive investigations, however more development is necessary in 

order to streamline the simulation process of impaired patients. Future clinical studies are 

ultimately necessary to evaluate if simulations may improve therapy results. (Dave., 2018) 

New research opportunities are being offered by the ability to quickly build synchronized 

muscle driven simulations. Many earlier simulation researches have one single simulation 

findings. With SimTrack, 3D simulations of multiple individuals may be generated and 

analyzed, and standards can be set to describe muscle function for subjects of various sizes, 

strengths and patterns of movement. Sensitivity studies are also practical to discover if the 
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findings from the simulation are responsive to modifications in model parameters. This is of 

particular use if a direct comparison is not practicable with experimental data (e.g. 

trajectories of muscle force). (D. A. Winter, 2009. ) 

Simulation-base tests may therefore be replicated and tested outside the lab for the first time. 

Such stringent testing are necessary in order to make biomechanical modeling more a science 

and less an art. It is a major problem to build a digital human (a computational model of the 

human neuromuscular skeletal system with a man-like complexity). If there are wide and 

complete models, then users can decide how they might reduce the model to solve a specific 

scientific issue. This problem and some of its key success advantages may be outlined in the 

Physiome Project. (Pandy, 2018) 

As demonstrated by the case study, it is also feasible to analyse how impairments such as 

aberrant muscular excitement might lead to atypical movements in particular patients and 

how therapies can have functional repercussions. The precision of the simulation depends on 

the fidelity of the neuromusculoskeletal system's underlying mathematical model. In 

developing musculoskeletal models several assumptions are made and some of the 

assumptions are based on little experimental data. (Coleman, 2020) 

In order to increase accuracy of muscular skeletal models, more in vivo muscle geometry and 

joint videos are needed. This enables us to learn how variations in size, age, deformation or 

surgery affect the model's prediction and how general model simulations are suited for each 

patient. Experiments that characterize the impacts of illness and surgery to generate muscle 

strength are necessary to check assumptions in musculoskeletal models and to assess their 

influence on movement.. In order to create simulations including sensory-motor control 

representations, neuroscience developments are essential. (Tilley, 2018) 

Since simulations contain assumptions and approximations, it is essential that the constraints 

of each simulation be evaluated. As more researchers utilize muscular skeleton dynamic 

simulations, in the context of their unique scientific investigation it is vital that each scientist 

evaluate the correctness of its models. OpenSim offers additional cooperation and peer 

review options. A multi-institutional cooperation is used to test, evaluate and enhance the 

code that comprises OpenSim. Users are invited to alter the code accordingly and share their 

modifications with others. (Kwak, 2019) 

Simulation-base tests may therefore be replicated and tested outside the lab for the first time. 

Such stringent testing are necessary in order to make biomechanical modeling more a science 

and less an art. It is a major problem to build a digital human (a computational model of the 

human neuromuscular skeletal system with a man-like complexity). If there are wide and 

complete models, then users can decide how they might reduce the model to solve a specific 

scientific issue. This problem and some of its key success advantages may be outlined in the 

Physiome Project. (Byrd, 2018) 

The development of movement simulations emphasizes the limits of current movement 

capture data and shows the need for enhanced testing methods. A plethora of data is 

generated by muscle-based simulations. Simulations must be used to clarify the principles 

which control muscle coordination and produce superior clinical results so that insights from 
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these data may be revealed. The development and spreading of tools for analysing and 

visualizing which offer fresh insights offers a significant challenge to biomechanical 

simulation progress. Our objective is to provide a platform for biomechanics to develop tools 

for the detection of principles governing human movement and for the development of 

improved therapy for people with physical impairments. (Riley., 2017) 

7. Conclusion Project 
The OpenSim-MATLAB interface offers a robust and flexible technique for efficient 

simulations of musculoskeletal movements using DC.. It might enable optimal control to be 

applied in developing therapeutic illness therapies that restrict human mobility. This study 

used the new MATLAB interface for the OpenSim API. All the programming was done in 

the high level MATLAB environment, but for musculoskeletal and associate mathematical 

calculations the robust and efficient OpenSim C++ library was utilized. OpenSim itself is 

based on the engine Simbody dynamics, built on cutting-edge mathematical algorithms like 

LAPACK. Our usage of MATLAB in OpenSim interface differs from the technique 

previously documented when MATLAB has been connected via an S-function with 

OpenSim. The S-Function API was utilized for OpenSim in a Simulink block and 

subsequently for running both open and closed loop forward MATLAB/Simulink 

simulations. This technique is, in fact, complimentary and is just for different reasons. During 

MATLAB use, OpenSim API, much like the IPOPT solver, is also available via Python. 

(Ethan, 2017) 

Python has numerous numerical and scientific computing capabilities as an open source high 

level programmed language. Therefore, the technique provided here should be replicated 

using either MATLAB or Python by other researchers. (Blake, 2019) 

We employ DC to solve the optimum control issue in this project, although we have taken 

various different solutions for generating simulations of a number of human movements. The 

previous technique was that controls were only discrete with low or high dimensions. Then, 

dynamic equations were integrated forward to assess the goal function and constraints. Some 

new techniques include muscle reflex modeling and global muscle parameterization using the 

Fourier series. These alternative techniques may also be implemented using OpenSim and 

MATLAB and would be susceptible to many of the limitations and strengths discussed in this 

document. For researchers using OpenSim and MATLAB, the example code supplied by this 

paper might be a good starting-point. (Dan., 2017) 

8. Forces of support  
The MATLAB forces reflect the point forces linked to each of the supports. The point force 

serves as the core of the pressure distribution over the entire base; yet in actual fact it is not 

just on one place of the body but the strength is divided between the support and the body 

across the contact region. The pressure distribution is now represented on a point force to 

simplify the governing equation that the sum of the torques is zero. However, this proves to 

be problematic as each individual is different in the contact area and exceedingly difficult to 

quantify for a clinician. The average pressure associate with each holder may be determined 

by breaking point strength between the contact areas. (Dan., 2017) 
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9. Assumptions of Model 
Assumptions of Model In the creation of the model there have been many assumptions 

because of limits in existing research on the human body and because of the unique 

characteristics of every human person. Because of the fact that all data have been obtained 

from a male of the 50th percentile, this model is not currently applied to people close to 

population extremes, such as 5th and 95th percentiles, or to people whose body shape or body 

weight distribution varies considerably from those of a male of the 500th. In addition, it 

cannot be used to people with postural abnormalities since, as oppose the curved nature of a 

healthy or malformed spine, the body is depicted as inflexible straight-lines. The model has 

certain broad assumptions. (D. A. Winter, 2009. ) The footrest is without frictional strength 

but rather functions as two separate footrests with just regular strength, where there is one 

footrest behind the shank and the second footrest below the feet. The feet are always 90° to 

the shank, which allows for the perpendicularity of the two modelled footrests. There is no 

friction component of the backrest and so a frictional force must be provided in the cushion to 

ensure that the user does not slide off from the wheelchair front. Lateral trunk supports forces 

do not include friction components; thus, a friction force needs to be provided to ensure the 

wheelchair user does not slide off the wheelchair's side. All these assumptions had to be 

established in order to maintain static determination of the free body diagram of the body 

segments that implies that the free body diagram has the same number of equations as 

unknown variables, so that each variable, the forces and positions in this instance may be 

resolved. (D. A. Winter, 2009. ) 

10. Research Future 
This research is still in its early phases, and new paths for future research in the same field 

were being developed as work was finished. Currently, two distinct MATLAB scripts are run 

independently of each other on both the side view and the front view of the model. Certain 

assumptions on the orientation of the body on the other aircraft have to be made inside each 

code. The model and plane angles can be combined to form a single code so that any 

orientation can be accurately represented, irrespective of the impossibility of a posture. 

(Coleman, 2020)This research is still in its early phases, and new paths for future research in 

the same field were being developed as work was finished. Currently, two distinct MATLAB 

scripts are run independently of each other on both the side view and the front view of the 

model. Certain assumptions on the orientation of the body on the other aircraft have to be 

made inside each code. The model and plane angles can be combined to form a single code so 

that any orientation can be accurately represented, irrespective of the impossibility of a 

posture. Rather, a static coefficient may be applied in a model to build a link between the 

force of friction and the normal force of support between the person in the wheelchair and the 

support in the corresponding case. Using this connection, the model should stay static while 

forecasting support forces more precisely. Finally, in a future endeavour, a 3D biomechanical 

software application called OpenSim can entail modelling the human body. OpenSim enables 

the determination of internal joint torques and muscle activations to expand this study to 

disabled persons. OpenSim may also display the user of the software the software user might 

also learn how the body posture changes as the muscles start to relax over time. (Byrd, 2018) 
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Appendix A: Matlab Code 

“function vect3d(p0,p1) 

  
% The function plot 3D vector with arrow from point p0 to point p1. 
% Example: 
%       p0 = [1 2 3];   % Coordinate of the first point p0 
%       p1 = [4 5 6];   % Coordinate of the second point p1 
%       vect3d(p0,p1) 
% YH 2017-10-04 

  
x0 = p0(1) ; y0 = p0(2) ; z0 = p0(3) ; % Read coordinate of the first point 

(tail) 
x1 = p1(1) ; y1 = p1(2) ; z1 = p1(3) ; % Read coordinate of the second 

point (head) 
plot3([x0;x1],[y0;y1],[z0;z1],'b-','linewidth',1.5) ;     % Draw a line 

between p0 and p1 

  
p = p1 - p0 ; 
% p = abs(p1 - p0) ; 
alpha = 0.5 ;   % Size of arrow head relative to the length of the vector 



29 

 

beta = 0.8 ;    % Width of the base of the arrow head relative to the 

length 

  
hu = [x1-alpha*(p(1)+beta*(p(2)+eps)) ; x1 ; x1-alpha*(p(1)-

beta*(p(2)+eps))] ; 
hv = [y1-alpha*(p(2)-beta*(p(1)+eps)) ; y1 ; y1-

alpha*(p(2)+beta*(p(1)+eps))] ; 
hw = [z1-alpha*p(3) ; z1 ; z1-alpha*p(3)] ; 

  
hold on ; 
plot3(hu(:),hv(:),hw(:),'b-','linewidth',1.5) ;  % Plot arrow head 
grid on ; 

  
% xlabel('x') ; ylabel('y') ; zlabel('z') ; 
% hold off ; 

  
? 
function vect3d(p0,p1) 

  
% The function plot 3D vector with arrow from point p0 to point p1. 
% Example: 
%       p0 = [1 2 3];   % Coordinate of the first point p0 
%       p1 = [4 5 6];   % Coordinate of the second point p1 
%       vect3d(p0,p1) 
% YH 2017-10-04 

  
x0 = p0(1) ; y0 = p0(2) ; z0 = p0(3) ; % Read coordinate of the first point 

(tail) 
x1 = p1(1) ; y1 = p1(2) ; z1 = p1(3) ; % Read coordinate of the second 

point (head) 
plot3([x0;x1],[y0;y1],[z0;z1],'r-','linewidth',1.5) ;     % Draw a line 

between p0 and p1 

  
p = p1 - p0 ; 
% p = abs(p1 - p0) ; 
alpha = 0.5 ;   % Size of arrow head relative to the length of the vector 
beta = 0.8 ;    % Width of the base of the arrow head relative to the 

length 

  
hu = [x1-alpha*(p(1)+beta*(p(2)+eps)) ; x1 ; x1-alpha*(p(1)-

beta*(p(2)+eps))] ; 
hv = [y1-alpha*(p(2)-beta*(p(1)+eps)) ; y1 ; y1-

alpha*(p(2)+beta*(p(1)+eps))] ; 
hw = [z1-alpha*p(3) ; z1 ; z1-alpha*p(3)] ; 

  
hold on ; 
plot3(hu(:),hv(:),hw(:),'r-','linewidth',1.5) ;  % Plot arrow head 
grid on ; 

  
% xlabel('x') ; ylabel('y') ; zlabel('z') ; 
% hold off ; 

  
%% Read data from mat file containing force plate and camera trajectory 

data from Qualysis export 
% 2019-07-01 YH modified for MSc project OpenSim preparation 

  
close all; clc; clear; 

  
%% Prepare and load for trc data (camera data - trajectory) 
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load s1m1t1.mat ; % 10 s of data   
% load s1static.mat ; % 1 s of data 
tName = whos ; 
eval ( strcat ( ' myData = ' , tName.name , ' ; ' ) ) ; % change the 

variable/structure name to 'myData' 

  
start = 0.4 ; % s, start time of display 
stop = 0.8 ; % s, stop time of display 
gap = 10 ; % no. of smaples to skip in display 

  
nf = myData.Frames ; % total number of frames captured by camera 
fs_fp = myData.Force(1).Frequency ; % Hz, sampling rate of force plate 1 = 

1000 (should be the same for plate 2 and 3; 3 is the seat) 
fs_cam = myData.FrameRate ; % Hz, sampling rate of cameras = 200 Hz 

usually, this is the sampling rate for the system 
t = 0:1/fs_cam:(myData.Frames/fs_cam-1/fs_cam) ; % s, e.g. 0-10 s sampled 

at 200 Hz = 0-2000 data points 

  
mass = 77 ; height = 1870 ; % kg; mm; s1 RNLI 

  
trj = myData.Trajectories.Labeled.Data ; % mm, original trajectories matrix 

to be transformed to model coord 
nmkr = myData.Trajectories.Labeled.Count ; % total no. of markers 
markers = myData.Trajectories.Labeled.Labels ; % marker names  

  
%% Lab coordinate to OpenSim model coordinate transformation - check the 

comment out part before use! 
% for mk = 1 : nmkr % Coordinate rotation 
%     trj(mk,1,:) = myData.Trajectories.Labeled.Data(mk,1,:) ; % model 

cooridnate +x from lab coord +x   
%     trj(mk,2,:) = myData.Trajectories.Labeled.Data(mk,3,:) ; % model 

cooridnate +y from lab coord +z   
%     trj(mk,3,:) = -myData.Trajectories.Labeled.Data(mk,2,:) ; % model 

cooridnate +z from lab coord -y           
% end 

  
% Data(67,4,2000), 67 markers, 4 channels (x,y,z,tol), 2000 data points 

(200 Hz)  
%     tr() = myData.Trajectories.Labeled.Data(1,1,:) ;  
% Index for each marker 

  
iLFHD = find(contains(markers,'LFHD')); % Head 4 
iRFHD = find(contains(markers,'RFHD')); 
iLBHD = find(contains(markers,'LBHD')); 
iRBHD = find(contains(markers,'RBHD')); 

  
iLACR = find(contains(markers,'LACR')); % Trunk 11~ 
iRACR = find(contains(markers,'RACR')); 
iCLAV = find(contains(markers,'CLAV')); 
iRBAC = find(contains(markers,'RBAC')); 
iSTER = find(contains(markers,'STER')); 
iC7 = find(contains(markers,'C7'));  
iT10 = find(contains(markers,'T10')); 
iLASIS = find(contains(markers,'LASIS')); 
iRASIS = find(contains(markers,'RASIS')); 
iLPSIS = find(contains(markers,'LPSIS')); 
iRPSIS = find(contains(markers,'RPSIS')); 
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iLUPA = find(contains(markers,'LUPA')); % Arms 22~ 
iRUPA = find(contains(markers,'RUPA')); 
iLUPP = find(contains(markers,'LUPP')); 
iRUPP = find(contains(markers,'RUPP')); 
iLUD = find(contains(markers,'LUD')); 
iRUD = find(contains(markers,'RUD')); 
iLLELB = find(contains(markers,'LLELB')); 
iRLELB = find(contains(markers,'RLELB')); 
iLMELB = find(contains(markers,'LMELB')); 
iRMELB = find(contains(markers,'RMELB')); 
iLFPA = find(contains(markers,'LFPA')); 
iRFPA = find(contains(markers,'RFPA')); 
iLFPP = find(contains(markers,'LFPP')); 
iRFPP = find(contains(markers,'RFPP')); 
iLFD = find(contains(markers,'LFD')); 
iRFD = find(contains(markers,'RFD')); 
iLWRA = find(contains(markers,'LWRA')); 
iRWRA = find(contains(markers,'RWRA')); 
iLWRB = find(contains(markers,'LWRB')); 
iRWRB = find(contains(markers,'RWRB')); 
iLMCP3 = find(contains(markers,'LMCP3')); 
iRMCP3 = find(contains(markers,'RMCP3')); 

  
iLMCP2 = find(contains(markers,'LMCP2'));  
iRMCP2 = find(contains(markers,'RMCP2')); 
iLMCP5 = find(contains(markers,'LMCP5')); 
iRMCP5 = find(contains(markers,'RMCP5')); 

  
iLTHIPA = find(contains(markers,'LTHIPA')); % Legs 30 
iRTHIPA = find(contains(markers,'RTHIPA')); 
iLTHIPP = find(contains(markers,'LTHIPP')); 
iRTHIPP = find(contains(markers,'RTHIPP')); 
iLTHIDA = find(contains(markers,'LTHIDA')); 
iRTHIDA = find(contains(markers,'RTHIDA')); 
iLTHIDP = find(contains(markers,'LTHIDP')); 
iRTHIDP = find(contains(markers,'RTHIDP')); 
iLLKN = find(contains(markers,'LLKN')); 
iRLKN = find(contains(markers,'RLKN')); 
iLMKN = find(contains(markers,'LMKN')); 
iRMKN = find(contains(markers,'RMKN')); 
iLSHAPA = find(contains(markers,'LSHAPA')); 
iRSHAPA = find(contains(markers,'RSHAPA')); 
iLSHAPP = find(contains(markers,'LSHAPP')); 
iRSHAPP = find(contains(markers,'RSHAPP')); 
iLSHADA = find(contains(markers,'LSHADA')); 
iRSHADA = find(contains(markers,'RSHADA')); 
iLSHADP = find(contains(markers,'LSHADP')); 
iRSHADP = find(contains(markers,'RSHADP')); 
iLLANK = find(contains(markers,'LLANK')); 
iRLANK = find(contains(markers,'RLANK')); 
iLMANK = find(contains(markers,'LMANK')); 
iRMANK = find(contains(markers,'RMANK')); 
iLHE = find(contains(markers,'LHE')); 
iRHE = find(contains(markers,'RHE')); 
iLMTP1 = find(contains(markers,'LMTP1')); 
iRMTP1 = find(contains(markers,'RMTP1')); 
iLMTP5 = find(contains(markers,'LMTP5')); 
iRMTP5 = find(contains(markers,'RMTP5')); 

  
for frames = 1:nf % Coordinate origin translation to between two feet 
    om = [ (trj(iLMANK,1,frames)+trj(iRMANK,1,frames))/2 ,... 
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        min(trj(iLMTP1,2,frames),trj(iRMTP1,2,frames)) ,... 
        (trj(iLMANK,3,frames)+trj(iRMANK,3,frames))/2 ] ; % origin of model 

coordinate 
end 

  
%% Kinematic (trajectory) data processing 
% Compute angular parameters of trunk 
theta_ASIS = permute( atan2d((trj(iLASIS,3,:)-trj(iRASIS,3,:)) , 

(trj(iLASIS,1,:)-trj(iRASIS,1,:))) , [3 2 1] ) ; % deg, ASIS line angle in 

the x-z plane 
theta_CS = permute( atan2d((trj(iCLAV,3,:)-trj(iSTER,3,:)) , 

(trj(iCLAV,1,:)-trj(iSTER,1,:))) , [3 2 1] ) ; % deg, CLAV-STER line angle 

in the x-z plane 
theta_FT = abs(theta_CS - theta_ASIS) ; % deg, front trunk roll angle in 

the frontal plane  

  
theta_PSIS = permute( atan2d((trj(iLPSIS,3,:)-trj(iRPSIS,3,:)) , 

(trj(iLPSIS,1,:)-trj(iRPSIS,1,:))) , [3 2 1] ) ; % deg, PSIS line angle in 

the x-z plane 
theta_C7T10 = permute( atan2d((trj(iC7,3,:)-trj(iT10,3,:)) , (trj(iC7,1,:)-

trj(iT10,1,:))) , [3 2 1] ) ; % deg, C7-T10 line angle in the x-z plane 
theta_BT = abs(theta_C7T10 - theta_PSIS) ; % deg, back trunk roll angle in 

the frontal plane 

  
% Compute velocity, acceleration from displacement 

  
dis_z_LASIS = permute( trj(iLASIS,3,:) , [3 2 1] )./1000 ; % displacement 

from mm to m 
dis_z_RASIS = permute( trj(iRASIS,3,:) , [3 2 1] )./1000 ; 
dis_z_LPSIS = permute( trj(iLPSIS,3,:) , [3 2 1] )./1000 ; 
dis_z_RPSIS = permute( trj(iRPSIS,3,:) , [3 2 1] )./1000 ; 

  
lpf = 15 ; % Hz, Lowpass filter 
[b,a]=butter(4,lpf./(fs_cam./2),'low'); 

  
vel_z_LASIS = gradient( dis_z_LASIS , 1/fs_cam ) ;  
velf_z_LASIS = filtfilt(b,a,vel_z_LASIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_LASIS = gradient( velf_z_LASIS , 1/fs_cam ) ; % peak acc from force 

estimates = 17730/(654.5/9.81) = 26.53 m/s2  

  
vel_z_RASIS = gradient( dis_z_RASIS , 1/fs_cam ) ;  
velf_z_RASIS = filtfilt(b,a,vel_z_RASIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_RASIS = gradient( velf_z_RASIS , 1/fs_cam ) ; 

  
vel_z_LPSIS = gradient( dis_z_LPSIS , 1/fs_cam ) ;  
velf_z_LPSIS = filtfilt(b,a,vel_z_LPSIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_LPSIS = gradient( velf_z_LPSIS , 1/fs_cam ) ; 

  
vel_z_RPSIS = gradient( dis_z_RPSIS , 1/fs_cam ) ;  
velf_z_RPSIS = filtfilt(b,a,vel_z_RPSIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_RPSIS = gradient( velf_z_RPSIS , 1/fs_cam ) ; 

  
figure (15) 
subplot(3,1,1) 
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plot(t,dis_z_LASIS,'k-',t,dis_z_RASIS,'k-.',t,dis_z_LPSIS,'b--

',t,dis_z_RPSIS,'r:'); 
ylabel('Displacement ( m )'); xlabel('Time ( s )'); 
subplot(3,1,2) 
plot(t,velf_z_LASIS,'k-',t,velf_z_RASIS,'k-.',t,velf_z_LPSIS,'b--

',t,velf_z_RPSIS,'r:'); 
ylabel('Velocity ( m / s )'); xlabel('Time ( s )'); 
subplot(3,1,3) 
plot(t,acc_z_LASIS,'k-',t,acc_z_RASIS,'k-.',t,acc_z_LPSIS,'b--

',t,acc_z_RPSIS,'r:'); 
ylabel('Acceleration ( m / s^2 )'); xlabel('Time ( s )'); 
legend('z-LASIS','z-RASIS','z-LPSIS','z-RPSIS'); 

  
%% Force plate (FP) data - 3 force plates 

  
f1 = myData.Force(1).Force()' ; % N, force plate data: 0-10000 data points 

at 1000 Hz = 0-10 s 
f2 = myData.Force(2).Force()' ;  
f3 = myData.Force(3).Force()' ; 

  
f1 = downsample(f1,fs_fp/fs_cam) ; % N, force down-sampled to match 

trajectory at 200 Hz 
f1 = fillnan(f1) ; % fillnan() to fill all nan in each column 
f2 = downsample(f2,fs_fp/fs_cam) ; f2 = fillnan(f2) ; 
f3 = downsample(f3,fs_fp/fs_cam) ; f3 = fillnan(f3) ; 

  
m1 = myData.Force(1).Moment()' ; % Nm, moment 
m2 = myData.Force(2).Moment()' ; 
m3 = myData.Force(3).Moment()' ; 

  
m1 = downsample(m1,fs_fp/fs_cam) ; % Nm, moment down-sampled to match 

trajectory at 200 Hz 
m1 = fillnan(m1) ; 
m2 = downsample(m2,fs_fp/fs_cam) ; m2 = fillnan(m2) ; 
m3 = downsample(m3,fs_fp/fs_cam) ; m3 = fillnan(m3) ; 

  
cop1 = myData.Force(1).COP()' ; % mm, centre of pressure 
cop2 = myData.Force(2).COP()' ; 
cop3 = myData.Force(3).COP()' ; 

  
cop1 = downsample(cop1,fs_fp/fs_cam) ; % mm, cop down-sampled to match 

trajectory at 200 Hz 
cop1 = fillnan(cop1) ; 
cop2 = downsample(cop2,fs_fp/fs_cam) ; cop2 = fillnan(cop2) ; 
cop3 = downsample(cop3,fs_fp/fs_cam) ; cop3 = fillnan(cop3) ; 

  
%% FP Step 1 check pose of all 3 force plates (FP): if needed inverse sign 

of X and Y axes FP data - Force, Moment, CoP 
% r_a = [-1 0 0 ; 0 -1 0 ; 0 0 1] ; % rotation matrix to rectify Qualysis 
% measurement from FP (flip signs of x and y) 2018-07-18 
% r_a = [1 0 0 ; 0 1 0 ; 0 0 1] ; % no rotation as 2018-07-01 
r_a = [-1 0 0 ; 0 1 0 ; 0 0 1] ; % flip x-axis only for force and moment 

but not COP: 

  
f1r = (r_a * f1')' ; % transformation using inner product with rotation 

matrix 
m1r = (r_a * m1')' ;  
cop1r = cop1 ; 
% cop1r = (r_a * cop1')' ; 
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f2r = (r_a * f2')' ; % transformation using inner product with rotation 

matrix 
m2r = (r_a * m2')' ; 
cop2r = cop2 ; 
% cop2r = (r_a * cop2')' ; 

  
f3r = (r_a * f3')' ; % transformation using inner product with rotation 

matrix 
m3r = (r_a * m3')' ;  
cop3r = cop3 ; 
% cop3r = (1 * cop3')' ;  

  
%% FP Step 2 rectify FP3 beneath rigid seat due to seat height 

  
az0 = 0.58 ; % m, thickness of padding above sensor z- this is seat height 
My = m3r(:,2) ; Mx = m3r(:,1) ; 
Fx = f3r(:,1) ; Fy = f3r(:,2) ; Fz = f3r(:,3) ;  

  
% COPx = -(Myr/Fz) 
Myr = ( My - Fx * az0 ) ; % Nm, thickness rectified moment y- 
COPx = - ( Myr ./ Fz )*1000 ; % mm, thickness rectified COP x- 

  
% COPy = (Mxr/Fz) 
Mxr = ( Mx + Fy * az0 ) ; % thickness rectified moment x- 
COPy = ( Mxr ./ Fz ) * 1000 ; % mm, thickness rectified COP y- 

  
m3r(:,1) = Mxr ; % Nm, rectified with thickness 
m3r(:,2) = Myr ; % Nm 
cop3r = [COPx COPy zeros(length(m3r),1)] ; % mm 

  
%% FP Step 3 rotation from lab coordinates to OpenSim model coordinates 
% After two steps: f1r, f2r, f3r, m1r, m2r, m3r, cop1r, cop2r, cop3r 

(number indicates FP) 
r_b = [1 0 0 ; 0 0 -1 ; 0 1 0] ; % rotation to OpenSim model coordinates 

2018-07-06 
% f1r = (r_b * f1r')' ; f2r = (r_b * f2r')' ; f3r = (r_b * f3r')' ; 
% m1r = (r_b * m1r')' ; m2r = (r_b * m2r')' ; m3r = (r_b * m3r')' ; 
% cop1r = (r_b * cop1r')' ; cop2r = (r_b * cop2r')' ; cop3r = (r_b * 

cop3r')' ; 

  
sw = mean(f3r(1:fs_cam*1,3)) ; % sitting weight on FP3 = average of first 1 

s of z-axis force  
% f3r(:,3) = f3r(:,3) - sw ; % remove static sitting weight 

  
%% FP Rectification display 

  
figure(11) % FP1 
subplot(2,3,1);plot(t,f1(:,1),'r--',t,f1(:,2),'b-',t,f1(:,3),'k-');  
% subplot(2,3,1),plot(t(1:end-3),f1(1:end-2,1),'r--',t(1:end-3),f1(1:end-

2,2),'b-',t(1:end-3),f1(1:end-2,3),'k-');  
xlabel('Time ( s )'); ylabel('Force ( N )'); title('Force VS Time (FP1) ') 
legend({'f_x','f_y','f_z'}); box on; grid on; 
subplot(2,3,4);plot(t,f1r(:,1),'r--',t,f1r(:,2),'b-',t,f1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 

  
subplot(2,3,2);plot(t,m1(:,1),'r--',t,m1(:,2),'b-',t,m1(:,3),'k-');  
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xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('Moment VS Time 

(FP1)') 
legend({'m_x','m_y','m_z'});  box on; grid on; 
subplot(2,3,5);plot(t,m1r(:,1),'r--',t,m1r(:,2),'b-',t,m1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 

  
subplot(2,3,3);plot(t,cop1(:,1),'r--',t,cop1(:,2),'b-',t,cop1(:,3),'k-');  
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('CoP VS Time (FP1)') 
legend({'cop_x','cop_y','cop_z'});  box on; grid on; 
subplot(2,3,6);plot(t,cop1r(:,1),'r--',t,cop1r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
figure(12) % FP2 
subplot(2,3,1);plot(t,f2(:,1),'r--',t,f2(:,2),'b-',t,f2(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Force ( N )'); title('Force VS Time (FP2) ') 
legend({'f_x','f_y','f_z'}); box on; grid on; 
subplot(2,3,4);plot(t,f2r(:,1),'r--',t,f2r(:,2),'b-',t,f2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 

  
subplot(2,3,2);plot(t,m2(:,1),'r--',t,m2(:,2),'b-',t,m2(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('Moment VS Time 

(FP2)') 
legend({'m_x','m_y','m_z'});  box on; grid on; 
subplot(2,3,5);plot(t,m2r(:,1),'r--',t,m2r(:,2),'b-',t,m2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 

  
subplot(2,3,3);plot(t,cop2(:,1),'r--',t,cop2(:,2),'b-',t,cop2(:,3),'k-');  
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('CoP VS Time (FP2)') 
legend({'cop_x','cop_y','cop_z'});  box on; grid on; 
subplot(2,3,6);plot(t,cop2r(:,1),'r--',t,cop2r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
figure(13) % FP3 
subplot(2,3,1);plot(t,f3(:,1),'r--',t,f3(:,2),'b-',t,f3(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Force ( N )'); title('Force VS Time (FP3) ') 
legend({'f_x','f_y','f_z'}); box on; grid on; 
subplot(2,3,4);plot(t,f3r(:,1),'r--',t,f3r(:,2),'b-',t,f3r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); 
legend({'f_x (rec)','f_y (rec)','f_z'},'location','best'); box on; grid on; 

  
subplot(2,3,2);plot(t,m3(:,1),'r--',t,m3(:,2),'b-',t,m3(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('Moment VS Time 

(FP3)') 
legend({'m_x','m_y','m_z'});  box on; grid on; 
subplot(2,3,5);plot(t,m3r(:,1),'r--',t,m3r(:,2),'b-',t,m3r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); 
legend({'m_x (rec+thick)','m_y (rec+thick)','m_z'},'location','best'); box 

on; grid on; 

  
subplot(2,3,3);plot(t,cop3(:,1),'r--',t,cop3(:,2),'b-',t,cop3(:,3),'k-');  
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('CoP VS Time (FP3)') 
legend({'cop_x','cop_y','cop_z'});  box on; grid on; 
subplot(2,3,6);plot(t,cop3r(:,1),'r--',t,cop3r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); 
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legend({'cop_x (rec+thick)','cop_y (rec+thick)'},'location','best'); box 

on; grid on; 

  
%% Three FPs - (1) Left foot; (2) Right foot; (3) Seat pan  

  
figure ( 21 ) 
set(gcf,'position',[10 5 700 800]); 

  
subplot(3,3,1);plot(t,f1r(:,1),'r--',t,f1r(:,2),'b-',t,f1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); title('FP1'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 
subplot(3,3,2);plot(t,m1r(:,1),'r--',t,m1r(:,2),'b-',t,m1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('FP1'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 
subplot(3,3,3),plot(t,cop1r(:,1),'r--',t,cop1r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('FP1'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
subplot(3,3,4);plot(t,f2r(:,1),'r--',t,f2r(:,2),'b-',t,f2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); title('FP2'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 
subplot(3,3,5);plot(t,m2r(:,1),'r--',t,m2r(:,2),'b-',t,m2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('FP2'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 
subplot(3,3,6);plot(t,cop2r(:,1),'r--',t,cop2r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('FP2'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
subplot(3,3,7);plot(t,f3r(:,1),'r--',t,f3r(:,2),'b-',t,f3r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); title('FP3'); 
legend({'f_x (rec)','f_y (rec)','f_z'},'location','best'); box on; grid on; 
subplot(3,3,8);plot(t,m3r(:,1),'r--',t,m3r(:,2),'b-',t,m3r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('FP3'); 
legend({'m_x (rec+thick)','m_y (rec+thick)','m_z'},'location','best'); box 

on; grid on; 
subplot(3,3,9);plot(t,cop3r(:,1),'r--',t,cop3r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('FP3'); 
legend({'cop_x (rec+thick)','cop_y (rec+thick)'},'location','best'); box 

on; grid on; 

  
%% Display 3D force (x-y-z) and COP (x-y) 
% p0 = COP coordinate x-y-z(0s) in mm, p1 = force x-y-z in N but same scale 

as mm COP  

  
fp1 = (1 * myData.Force(1).ForcePlateLocation')' ; % Force-plate 1 rotation 

to model coord : 1 = no rotation, r_b = model coord rotation 
fp1x = fp1(:,1) ; fp1y = fp1(:,2) ; fp1z = fp1(:,3) ;  
fp2 = (1 * myData.Force(2).ForcePlateLocation')' ; % Force-plate 2 rotation 

to model coord 
fp2x = fp2(:,1) ; fp2y = fp2(:,2) ; fp2z = fp2(:,3) ;  
fp3 = (1 * myData.Force(3).ForcePlateLocation')' ; % Force-plate 2 rotation 

to model coord 
fp3x = fp3(:,1) ; fp3y = fp3(:,2) ; fp3z = fp3(:,3) ;  

  
for n = start/(1/fs_cam):gap:stop/(1/fs_cam) % frame range to be plotted 

Figure 31  

         
figure ( 31 )  
set(gcf,'position',[750 5 550 800]); % position of figure window on screen 
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% fp3_p0 = [cop3r(n,1)+mean(fp3x) cop3r(n,2)+mean(fp3y) 

cop3r(n,3)+mean(fp3z)] ; % Coordinate (x y z) of the first point p0 
fp3_p0 = [cop3r(n,1)+mean(fp3x) cop3r(n,2)+mean(fp3y) 

cop3r(n,3)+mean(fp3z)+1000*az0] ; % Coordinate (x y z) of the first point 

p0 raised az0 for FP3 
fp3_p1 = fp3_p0 + f3r(n,:) ;    % Coordinate (x y z) of the second point p1 
vect3d(fp3_p0,fp3_p1) ; hold on ; 

  
fp2_p0 = [cop2r(n,1)+mean(fp2x) cop2r(n,2)+mean(fp2y) 

cop2r(n,3)+mean(fp2z)] ; % Coordinate (x y z) of the first point p0 
fp2_p1 = fp2_p0 + f2r(n,:) ;    % Coordinate (x y z) of the second point p1 
vect3d(fp2_p0,fp2_p1) ; hold on ; 

  
fp1_p0 = [cop1r(n,1)+mean(fp1x) cop1r(n,2)+mean(fp1y) 

cop1r(n,3)+mean(fp1z)] ; % Coordinate (x y z) of the first point p0 
fp1_p1 = fp1_p0 + f1r(n,:) ;    % Coordinate (x y z) of the second point p1 
vect3d(fp1_p0,fp1_p1) ; hold on ; 

  
% Trajectory data: 
% myData.Trajectories.Labeled.Data(1,1,:) ; 
% Data(67,4,2000), 67 markers, 4 channels (x,y,z,tol), 2000 data points 

(200 Hz)  

  
% Find upper body centroid: 
upper_x = mean([trj(iLFHD,1,n) trj(iRFHD,1,n) ... % Head 
                trj(iLBHD,1,n) trj(iRBHD,1,n) ... 
                trj(iLACR,1,n) trj(iRACR,1,n) ... % Trunk 
                trj(iRBAC,1,n) trj(iSTER,1,n) ... 
                trj(iC7,1,n) trj(iT10,1,n) ... 
                trj(iLPSIS,1,n) trj(iRPSIS,1,n) ... 
                trj(iLASIS,1,n) trj(iRASIS,1,n) ...               
                trj(iLUPA,1,n) trj(iRUPA,1,n) ... % Arms 
                trj(iLUPP,1,n) trj(iRUPP,1,n) ...                 
                trj(iLUD,1,n) trj(iRUD,1,n) ... 
                trj(iLLELB,1,n) trj(iRLELB,1,n) ... 
                trj(iLMELB,1,n) trj(iRMELB,1,n) ... 
                trj(iLFPA,1,n) trj(iRFPA,1,n) ... 
                trj(iLFPP,1,n) trj(iRFPP,1,n) ...                 
                trj(iLFD,1,n) trj(iRFD,1,n) ...                 
                trj(iLWRA,1,n) trj(iRWRA,1,n) ... 
                trj(iLWRB,1,n) trj(iRWRB,1,n) ... 
                trj(iLMCP3,1,n) trj(iRMCP3,1,n) ]) ;  

  
upper_y = mean([trj(iLFHD,2,n) trj(iRFHD,2,n) ... % Head 
                trj(iLBHD,2,n) trj(iRBHD,2,n) ... 
                trj(iLACR,2,n) trj(iRACR,2,n) ... % Trunk 
                trj(iRBAC,2,n) trj(iSTER,2,n) ... 
                trj(iC7,2,n) trj(iT10,2,n) ... 
                trj(iLPSIS,2,n) trj(iRPSIS,2,n) ... 
                trj(iLASIS,2,n) trj(iRASIS,2,n) ...               
                trj(iLUPA,2,n) trj(iRUPA,2,n) ... % Arms 
                trj(iLUPP,2,n) trj(iRUPP,2,n) ...                 
                trj(iLUD,2,n) trj(iRUD,2,n) ... 
                trj(iLLELB,2,n) trj(iRLELB,2,n) ... 
                trj(iLMELB,2,n) trj(iRMELB,2,n) ... 
                trj(iLFPA,2,n) trj(iRFPA,2,n) ... 
                trj(iLFPP,2,n) trj(iRFPP,2,n) ...                 
                trj(iLFD,2,n) trj(iRFD,2,n) ...                 
                trj(iLWRA,2,n) trj(iRWRA,2,n) ... 
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                trj(iLWRB,2,n) trj(iRWRB,2,n) ... 
                trj(iLMCP3,2,n) trj(iRMCP3,2,n) ]) ; 

  
upper_z = mean([trj(iLFHD,3,n) trj(iRFHD,3,n) ... % Head 
                trj(iLBHD,3,n) trj(iRBHD,3,n) ... 
                trj(iLACR,3,n) trj(iRACR,3,n) ... % Trunk 
                trj(iRBAC,3,n) trj(iSTER,3,n) ... 
                trj(iC7,3,n) trj(iT10,3,n) ... 
                trj(iLPSIS,3,n) trj(iRPSIS,3,n) ... 
                trj(iLASIS,3,n) trj(iRASIS,3,n) ...           
                trj(iLUPA,3,n) trj(iRUPA,3,n) ... % Arms 
                trj(iLUPP,3,n) trj(iRUPP,3,n) ...                 
                trj(iLUD,3,n) trj(iRUD,3,n) ... 
                trj(iLLELB,3,n) trj(iRLELB,3,n) ... 
                trj(iLMELB,3,n) trj(iRMELB,3,n) ... 
                trj(iLFPA,3,n) trj(iRFPA,3,n) ... 
                trj(iLFPP,3,n) trj(iRFPP,3,n) ...                 
                trj(iLFD,3,n) trj(iRFD,3,n) ...                 
                trj(iLWRA,3,n) trj(iRWRA,3,n) ... 
                trj(iLWRB,3,n) trj(iRWRB,3,n) ... 
                trj(iLMCP3,3,n) trj(iRMCP3,3,n) ]) ; 

             
for mk = 1:nmkr % s1static.mat only contains 66 markers  
    scatter3(trj(mk,1,n),trj(mk,2,n),trj(mk,3,n),100,... 
        'MarkerEdgeColor','k','MarkerFaceColor','g') ; hold on 
    

scatter3(upper_x,upper_y,upper_z,150,'MarkerEdgeColor','k','MarkerFaceColor

','r') ; hold on 
end 

  
ax = gca; ax.Projection = 'perspective'; % Foreshortening to perceive depth 

in 2D representations of 3D objects 
% 'orthographic' as defualt to maintain correct relative dimensions of 

graphic objects 
view(0,10); %  
axis([-50 1000 -50 1500 -50 1500]) ; % frontal view 
ax = gca; ax.XTick = [ 0 500 1000 1500]; ax.YTick = [0 500 1000 1500]; 

ax.ZTick = [0 500 1000 1500]; 
title(['start - stop / total time = ' num2str(start) ' - ' num2str(stop) ' 

/ ' num2str(t(end)) '  at ' num2str(fs_cam) ' Hz' ]) ; 

  
fill3( fp1x , fp1y , fp1z , [0.85 0.85 0.85] ) ; hold on ; % FP1  
text((fp1x(2)+fp1x(1))/2+100,(fp1y(4)+fp1y(1))/2-250,10,'FP1','Color',[0 0 

1]) ; % FP1 
line([(fp1x(1)+fp1x(2))/2 (fp1x(3)+fp1x(4))/2] , [(fp1y(1)+fp1y(2))/2 

(fp1y(3)+fp1y(4))/2] ,... 
    [(fp1z(1)+fp1z(2))/2 (fp1z(3)+fp1z(4))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ;  
line([(fp1x(1)+fp1x(4))/2 (fp1x(2)+fp1x(3))/2] , [(fp1y(1)+fp1y(4))/2 

(fp1y(2)+fp1y(3))/2] ,... 
    [(fp1z(1)+fp1z(4))/2 (fp1z(2)+fp1z(3))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ; 

  
fill3( fp2x , fp2y , fp2z , [0.85 0.85 0.85] ) ; hold on ; % FP2  
text((fp2x(2)+fp2x(1))/2+100,(fp2y(4)+fp2y(1))/2-250,10,'FP2','Color',[0 0 

1]) ; % FP2 
line([(fp2x(1)+fp2x(2))/2 (fp2x(3)+fp2x(4))/2] , [(fp2y(1)+fp2y(2))/2 

(fp2y(3)+fp2y(4))/2] ,... 
    [(fp2z(1)+fp2z(2))/2 (fp2z(3)+fp2z(4))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ; 
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line([(fp2x(1)+fp2x(4))/2 (fp2x(2)+fp2x(3))/2] , [(fp2y(1)+fp2y(4))/2 

(fp2y(2)+fp2y(3))/2] ,... 
    [(fp2z(1)+fp2z(4))/2 (fp2z(2)+fp2z(3))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ; 

  
% FP3 raised by az0 
fill3( fp3x , fp3y , fp3z+1000*az0 , [0.85 0.85 0.85] ) ; hold on ; % FP3  
text((fp3x(2)+fp3x(1))/2+50,(fp3y(4)+fp3y(1))/2-

250,30+1000*az0,'rFP3','Color',[0 0 1]) ; % FP3 
line([(fp3x(1)+fp3x(2))/2 (fp3x(3)+fp3x(4))/2] , [(fp3y(1)+fp3y(2))/2 

(fp3y(3)+fp3y(4))/2] ,... 
    [(fp3z(1)+fp3z(2))/2+1000*az0 (fp3z(3)+fp3z(4))/2+1000*az0] , 'color' , 

[0 0 0] , 'linewidth' , 1 ) ; hold on ; 
line([(fp3x(1)+fp3x(4))/2 (fp3x(2)+fp3x(3))/2] , [(fp3y(1)+fp3y(4))/2 

(fp3y(2)+fp3y(3))/2] ,... 
    [(fp3z(1)+fp3z(4))/2+1000*az0 (fp3z(2)+fp3z(3))/2+1000*az0] , 'color' , 

[0 0 0] , 'linewidth' , 1 ) ; hold on ; 

  
% Upper body centroid vertical projection 
line([upper_x upper_x] , [upper_y upper_y] , [0 upper_z] , 'color' , [1 0 

0] , 'linewidth' , 1 , 'linestyle' , '--') ;  hold on ; 
w_up = mass*0.75*9.81 ;                     % N, upper body weight = 75% of 

body weight  
upc_p0 = [upper_x upper_y upper_z] ;        % Coordinate (x y z) of the 

first point p0 
upc_p1 = [upper_x upper_y upper_z-w_up] ;   % Coordinate (x y z) of the 

second point p1 
vect3d_red(upc_p0,upc_p1) ; hold on ; 

  
% Head 
fill3( [trj(iLBHD,1,n) trj(iLFHD,1,n) trj(iRFHD,1,n) trj(iRBHD,1,n)],...  % 

head x 
        [trj(iLBHD,2,n) trj(iLFHD,2,n) trj(iRFHD,2,n) trj(iRBHD,2,n)],... % 

y 
        [trj(iLBHD,3,n) trj(iLFHD,3,n) trj(iRFHD,3,n) trj(iRBHD,3,n)],... % 

z 
       [0.5 0.5 0.5] ) ; hold on ; 

    
% Trunk 
line( [trj(iLACR,1,n) trj(iCLAV,1,n) trj(iSTER,1,n)],... 
      [trj(iLACR,2,n) trj(iCLAV,2,n) trj(iSTER,2,n)],... 
      [trj(iLACR,3,n) trj(iCLAV,3,n) trj(iSTER,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line( [trj(iCLAV,1,n) trj(iRACR,1,n) trj(iRBAC,1,n)],... 
      [trj(iCLAV,2,n) trj(iRACR,2,n) trj(iRBAC,2,n)],... 
      [trj(iCLAV,3,n) trj(iRACR,3,n) trj(iRBAC,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line( [trj(iLACR,1,n) trj(iC7,1,n) trj(iRACR,1,n)],... 
      [trj(iLACR,2,n) trj(iC7,2,n) trj(iRACR,2,n)],... 
      [trj(iLACR,3,n) trj(iC7,3,n) trj(iRACR,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
fill3( [trj(iLPSIS,1,n) trj(iLASIS,1,n) trj(iRASIS,1,n) 

trj(iRPSIS,1,n)],... 
       [trj(iLPSIS,2,n) trj(iLASIS,2,n) trj(iRASIS,2,n) 

trj(iRPSIS,2,n)],... 
       [trj(iLPSIS,3,n) trj(iLASIS,3,n) trj(iRASIS,3,n) trj(iRPSIS,3,n)], 

[0.5 0.5 0.5] ) ; hold on ; 

   
line([(trj(iLPSIS,1,n)+trj(iRPSIS,1,n))/2 trj(iT10,1,n)],...  
     [(trj(iLPSIS,2,n)+trj(iRPSIS,2,n))/2 trj(iT10,2,n)],...  
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     [(trj(iLPSIS,3,n)+trj(iRPSIS,3,n))/2 trj(iT10,3,n)], 'color' , [0 0 0] 

, 'linewidth' , 2 ) ;  hold on ; 
line( [trj(iT10,1,n) trj(iSTER,1,n)],... 
      [trj(iT10,2,n) trj(iSTER,2,n)],... 
      [trj(iT10,3,n) trj(iSTER,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 ) 

; hold on ; 

  
% Arm left 
fill3( [trj(iLUPA,1,n) trj(iLUPP,1,n) trj(iLUD,1,n)],... 
       [trj(iLUPA,2,n) trj(iLUPP,2,n) trj(iLUD,2,n)],... 
       [trj(iLUPA,3,n) trj(iLUPP,3,n) trj(iLUD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLFPA,1,n) trj(iLFPP,1,n) trj(iLFD,1,n)],... 
       [trj(iLFPA,2,n) trj(iLFPP,2,n) trj(iLFD,2,n)],... 
       [trj(iLFPA,3,n) trj(iLFPP,3,n) trj(iLFD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLWRA,1,n) trj(iLWRB,1,n) trj(iLMCP3,1,n)],... 
       [trj(iLWRA,2,n) trj(iLWRB,2,n) trj(iLMCP3,2,n)],... 
       [trj(iLWRA,3,n) trj(iLWRB,3,n) trj(iLMCP3,3,n)], [0.5 0.5 0.5] ) ; 

hold on ;   
line([trj(iLMELB,1,n) trj(iLLELB,1,n) trj(iLACR,1,n)],...  
     [trj(iLMELB,2,n) trj(iLLELB,2,n) trj(iLACR,2,n)],...  
     [trj(iLMELB,3,n) trj(iLLELB,3,n) trj(iLACR,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ;  hold on ; 
line([trj(iLWRB,1,n) trj(iLLELB,1,n)],...  
     [trj(iLWRB,2,n) trj(iLLELB,2,n)],...  
     [trj(iLWRB,3,n) trj(iLLELB,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;  hold on ; 

  
% Arm right 
fill3( [trj(iRUPA,1,n) trj(iRUPP,1,n) trj(iRUD,1,n)],... 
       [trj(iRUPA,2,n) trj(iRUPP,2,n) trj(iRUD,2,n)],... 
       [trj(iRUPA,3,n) trj(iRUPP,3,n) trj(iRUD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRFPA,1,n) trj(iRFPP,1,n) trj(iRFD,1,n)],... 
       [trj(iRFPA,2,n) trj(iRFPP,2,n) trj(iRFD,2,n)],... 
       [trj(iRFPA,3,n) trj(iRFPP,3,n) trj(iRFD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRWRA,1,n) trj(iRWRB,1,n) trj(iRMCP3,1,n)],... 
       [trj(iRWRA,2,n) trj(iRWRB,2,n) trj(iRMCP3,2,n)],... 
       [trj(iRWRA,3,n) trj(iRWRB,3,n) trj(iRMCP3,3,n)], [0.5 0.5 0.5] ) ; 

hold on ;  
line([trj(iRMELB,1,n) trj(iRLELB,1,n) trj(iRACR,1,n)],...  
     [trj(iRMELB,2,n) trj(iRLELB,2,n) trj(iRACR,2,n)],...  
     [trj(iRMELB,3,n) trj(iRLELB,3,n) trj(iRACR,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ;  hold on ; 
line([trj(iRWRB,1,n) trj(iRLELB,1,n)],...  
     [trj(iRWRB,2,n) trj(iRLELB,2,n)],...  
     [trj(iRWRB,3,n) trj(iRLELB,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;   hold on ; 

  
% Leg left 
fill3( [trj(iLTHIPA,1,n) trj(iLTHIPP,1,n) trj(iLTHIDP,1,n) 

trj(iLTHIDA,1,n)],... 
       [trj(iLTHIPA,2,n) trj(iLTHIPP,2,n) trj(iLTHIDP,2,n) 

trj(iLTHIDA,2,n)],... 
       [trj(iLTHIPA,3,n) trj(iLTHIPP,3,n) trj(iLTHIDP,3,n) 

trj(iLTHIDA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iLSHAPA,1,n) trj(iLSHAPP,1,n) trj(iLSHADP,1,n) 

trj(iLSHADA,1,n)],... 
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       [trj(iLSHAPA,2,n) trj(iLSHAPP,2,n) trj(iLSHADP,2,n) 

trj(iLSHADA,2,n)],... 
       [trj(iLSHAPA,3,n) trj(iLSHAPP,3,n) trj(iLSHADP,3,n) 

trj(iLSHADA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iLHE,1,n) trj(iLMTP1,1,n) trj(iLMTP5,1,n)],... 
       [trj(iLHE,2,n) trj(iLMTP1,2,n) trj(iLMTP5,2,n)],... 
       [trj(iLHE,3,n) trj(iLMTP1,3,n) trj(iLMTP5,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLHE,1,n) trj(iLMTP1,1,n) trj(iLMANK,1,n)],... 
       [trj(iLHE,2,n) trj(iLMTP1,2,n) trj(iLMANK,2,n)],... 
       [trj(iLHE,3,n) trj(iLMTP1,3,n) trj(iLMANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLHE,1,n) trj(iLMTP5,1,n) trj(iLLANK,1,n)],... 
       [trj(iLHE,2,n) trj(iLMTP5,2,n) trj(iLLANK,2,n)],... 
       [trj(iLHE,3,n) trj(iLMTP5,3,n) trj(iLLANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 

  
line([trj(iLLANK,1,n) trj(iLLKN,1,n) trj(iLMKN,1,n)],... 
     [trj(iLLANK,2,n) trj(iLLKN,2,n) trj(iLMKN,2,n)],... 
     [trj(iLLANK,3,n) trj(iLLKN,3,n) trj(iLMKN,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line([trj(iLLKN,1,n) trj(iLASIS,1,n)],...  
     [trj(iLLKN,2,n) trj(iLASIS,2,n)],...  
     [trj(iLLKN,3,n) trj(iLASIS,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;  hold on ; 

  
% Leg right 
fill3( [trj(iRTHIPA,1,n) trj(iRTHIPP,1,n) trj(iRTHIDP,1,n) 

trj(iRTHIDA,1,n)],... 
       [trj(iRTHIPA,2,n) trj(iRTHIPP,2,n) trj(iRTHIDP,2,n) 

trj(iRTHIDA,2,n)],... 
       [trj(iRTHIPA,3,n) trj(iRTHIPP,3,n) trj(iRTHIDP,3,n) 

trj(iRTHIDA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iRSHAPA,1,n) trj(iRSHAPP,1,n) trj(iRSHADP,1,n) 

trj(iRSHADA,1,n)],... 
       [trj(iRSHAPA,2,n) trj(iRSHAPP,2,n) trj(iRSHADP,2,n) 

trj(iRSHADA,2,n)],... 
       [trj(iRSHAPA,3,n) trj(iRSHAPP,3,n) trj(iRSHADP,3,n) 

trj(iRSHADA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iRHE,1,n) trj(iRMTP1,1,n) trj(iRMTP5,1,n)],... 
       [trj(iRHE,2,n) trj(iRMTP1,2,n) trj(iRMTP5,2,n)],... 
       [trj(iRHE,3,n) trj(iRMTP1,3,n) trj(iRMTP5,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRHE,1,n) trj(iRMTP1,1,n) trj(iRMANK,1,n)],... 
       [trj(iRHE,2,n) trj(iRMTP1,2,n) trj(iRMANK,2,n)],... 
       [trj(iRHE,3,n) trj(iRMTP1,3,n) trj(iRMANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRHE,1,n) trj(iRMTP5,1,n) trj(iRLANK,1,n)],... 
       [trj(iRHE,2,n) trj(iRMTP5,2,n) trj(iRLANK,2,n)],... 
       [trj(iRHE,3,n) trj(iRMTP5,3,n) trj(iRLANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 

    
line([trj(iRLANK,1,n) trj(iRLKN,1,n) trj(iRMKN,1,n)],... 
     [trj(iRLANK,2,n) trj(iRLKN,2,n) trj(iRMKN,2,n)],... 
     [trj(iRLANK,3,n) trj(iRLKN,3,n) trj(iRMKN,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line([trj(iRLKN,1,n) trj(iRASIS,1,n)],...  
     [trj(iRLKN,2,n) trj(iRASIS,2,n)],...  
     [trj(iRLKN,3,n) trj(iRASIS,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;  hold on ; 
end 
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%% Display FP3 and 8 trj 

  
figure ( 52 ) % Force and moment with loading rate 2019-02-08 
set(gcf,'position',[10 200 700 550]); 

  
subplot(3,1,1); 
h(1) = plot(t,f3r(:,1),'k-','linewidth',0.5); hold on 
h(2) = plot(t,f3r(:,2),'k:','linewidth',0.5); 
h(3) = plot(t,f3r(:,3),'k-','linewidth',1.5);  
ylabel('Force ( N )'); % xlabel('Time ( s )');  
legend(h(1:3),{'\itF_x','\itF_y','\itF_z'},'location','northeast'); box on; 

grid off; 
axis([0 10 -250 1750]) ;  
ax = gca; ax.YTick = [-250 0 250 500 750 1000 1250 1500 1750]; % ax.XTick = 

[0 500 1000 1500];  
title(['FP3    ' tName.name]); 

  
subplot(3,1,2); 
h(4) = plot(t,m3r(:,1),'k:','linewidth',0.5); hold on;  
h(5) = plot(t,m3r(:,2),'k-','linewidth',1.5); 
ylabel('Moment ( Nm )'); % xlabel('Time ( s )');  
legend(h(4:5),{'\itM_x','\itM_y'},'location','northeast'); box on; grid 

off; 
axis([0 10 -100 50]) ;  
ax = gca; ax.YTick = [-100 -50 0 50]; 

  
subplot(3,1,3); 
h(6) = plot(t,theta_PSIS,'k-','linewidth',0.5); hold on 
h(7) = plot(t,theta_C7T10,'k:','linewidth',0.5); hold on 
h(8) = plot(t,theta_BT,'k-','linewidth',1.5);  
xlabel('Time ( s )'); ylabel('Angle ( degree )');  
legend(h(6:8),{'\it\theta_P_S_I_S','\it\theta_C_7_T_1_0','\it\theta_B_T'},'

location','northeast'); box on; grid off; 
axis([0 10 -30 120]) ;  
ax = gca; ax.YTick = [-30 0 30 60 90 120]; % ax.XTick = [0 500 1000 1500];  

  
figure ( 61 ) % Angular data 
set(gcf,'position',[750 5 700 800]); 

  
subplot(2,1,1); 
plot(t,theta_ASIS,'k-','linewidth',0.5); hold on 
plot(t,theta_CS,'k:','linewidth',0.5); hold on 
plot(t,theta_FT,'k-','linewidth',1.5);  
xlabel('Time ( s )'); ylabel('Angle ( degree )');  
legend({'\it\theta_A_S_I_S','\it\theta_C_S','\it\theta_F_T'},'location','no

rtheast'); box on; grid off; 
axis([0 10 -20 120]) ;  
ax = gca; ax.YTick = [-20 0 20 40 60 80 100 120]; % ax.XTick = [0 500 1000 

1500];  
% title('FP3'); 

  
subplot(2,1,2); 
plot(t,theta_PSIS,'k-','linewidth',0.5); hold on 
plot(t,theta_C7T10,'k:','linewidth',0.5); hold on 
plot(t,theta_BT,'k-','linewidth',1.5);  
xlabel('Time ( s )'); ylabel('Angle ( degree )');  
legend({'\it\theta_P_S_I_S','\it\theta_C_7_T_1_0','\it\theta_B_T'},'locatio

n','northeast'); box on; grid off; 
axis([0 10 -20 120]) ;  
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ax = gca; ax.YTick = [-20 0 20 40 60 80 100 120]; % ax.XTick = [0 500 1000 

1500];  

  
% csvwrite('s1m1t1_t_force_angle.csv',[t' f3r m3r theta_ASIS theta_CS 

theta_FT theta_PSIS theta_C7T10 theta_BT]); % check data structure 

  
function [out] = fillnan(in) ; 
for i = 1:3 
    out(:,i) = fillmissing(in(:,i),'nearest'); 
end 
end 
function vect3d(p0,p1) 

  
% The function plot 3D vector with arrow from point p0 to point p1. 
% Example: 
%       p0 = [1 2 3];   % Coordinate of the first point p0 
%       p1 = [4 5 6];   % Coordinate of the second point p1 
%       vect3d(p0,p1) 
% YH 2017-10-04 

  
x0 = p0(1) ; y0 = p0(2) ; z0 = p0(3) ; % Read coordinate of the first point 

(tail) 
x1 = p1(1) ; y1 = p1(2) ; z1 = p1(3) ; % Read coordinate of the second 

point (head) 
plot3([x0;x1],[y0;y1],[z0;z1],'b-','linewidth',1.5) ;     % Draw a line 

between p0 and p1 

  
p = p1 - p0 ; 
% p = abs(p1 - p0) ; 
alpha = 0.5 ;   % Size of arrow head relative to the length of the vector 
beta = 0.8 ;    % Width of the base of the arrow head relative to the 

length 

  
hu = [x1-alpha*(p(1)+beta*(p(2)+eps)) ; x1 ; x1-alpha*(p(1)-

beta*(p(2)+eps))] ; 
hv = [y1-alpha*(p(2)-beta*(p(1)+eps)) ; y1 ; y1-

alpha*(p(2)+beta*(p(1)+eps))] ; 
hw = [z1-alpha*p(3) ; z1 ; z1-alpha*p(3)] ; 

  
hold on ; 
plot3(hu(:),hv(:),hw(:),'b-','linewidth',1.5) ;  % Plot arrow head 
grid on ; 

  
% xlabel('x') ; ylabel('y') ; zlabel('z') ; 
% hold off ; 

  
? 
function vect3d(p0,p1) 

  
% The function plot 3D vector with arrow from point p0 to point p1. 
% Example: 
%       p0 = [1 2 3];   % Coordinate of the first point p0 
%       p1 = [4 5 6];   % Coordinate of the second point p1 
%       vect3d(p0,p1) 
% YH 2017-10-04 

  
x0 = p0(1) ; y0 = p0(2) ; z0 = p0(3) ; % Read coordinate of the first point 

(tail) 



44 

 

x1 = p1(1) ; y1 = p1(2) ; z1 = p1(3) ; % Read coordinate of the second 

point (head) 
plot3([x0;x1],[y0;y1],[z0;z1],'r-','linewidth',1.5) ;     % Draw a line 

between p0 and p1 

  
p = p1 - p0 ; 
% p = abs(p1 - p0) ; 
alpha = 0.5 ;   % Size of arrow head relative to the length of the vector 
beta = 0.8 ;    % Width of the base of the arrow head relative to the 

length 

  
hu = [x1-alpha*(p(1)+beta*(p(2)+eps)) ; x1 ; x1-alpha*(p(1)-

beta*(p(2)+eps))] ; 
hv = [y1-alpha*(p(2)-beta*(p(1)+eps)) ; y1 ; y1-

alpha*(p(2)+beta*(p(1)+eps))] ; 
hw = [z1-alpha*p(3) ; z1 ; z1-alpha*p(3)] ; 

  
hold on ; 
plot3(hu(:),hv(:),hw(:),'r-','linewidth',1.5) ;  % Plot arrow head 
grid on ; 

  
% xlabel('x') ; ylabel('y') ; zlabel('z') ; 
% hold off ; 

  
? 
%% Read data from mat file containing force plate and camera trajectory 

data from Qualysis export 
% 2019-07-01 YH modified for MSc project OpenSim preparation 

  
close all; clc; clear; 

  

%% Prepare and load for trc data (camera data - trajectory) 

  
load s1m1t1.mat ; % 10 s of data   
% load s1static.mat ; % 1 s of data 
tName = whos ; 
eval ( strcat ( ' myData = ' , tName.name , ' ; ' ) ) ; % change the 

variable/structure name to 'myData' 

  
start = 0.4 ; % s, start time of display 
stop = 0.8 ; % s, stop time of display 
gap = 10 ; % no. of smaples to skip in display 

  
nf = myData.Frames ; % total number of frames captured by camera 
fs_fp = myData.Force(1).Frequency ; % Hz, sampling rate of force plate 1 = 

1000 (should be the same for plate 2 and 3; 3 is the seat) 
fs_cam = myData.FrameRate ; % Hz, sampling rate of cameras = 200 Hz 

usually, this is the sampling rate for the system 
t = 0:1/fs_cam:(myData.Frames/fs_cam-1/fs_cam) ; % s, e.g. 0-10 s sampled 

at 200 Hz = 0-2000 data points 

  
mass = 77 ; height = 1870 ; % kg; mm; s1 RNLI 

  
trj = myData.Trajectories.Labeled.Data ; % mm, original trajectories matrix 

to be transformed to model coord 
nmkr = myData.Trajectories.Labeled.Count ; % total no. of markers 
markers = myData.Trajectories.Labeled.Labels ; % marker names  
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%% Lab coordinate to OpenSim model coordinate transformation - check the 

comment out part before use! 
% for mk = 1 : nmkr % Coordinate rotation 
%     trj(mk,1,:) = myData.Trajectories.Labeled.Data(mk,1,:) ; % model 

cooridnate +x from lab coord +x   
%     trj(mk,2,:) = myData.Trajectories.Labeled.Data(mk,3,:) ; % model 

cooridnate +y from lab coord +z   
%     trj(mk,3,:) = -myData.Trajectories.Labeled.Data(mk,2,:) ; % model 

cooridnate +z from lab coord -y           
% end 

  
% Data(67,4,2000), 67 markers, 4 channels (x,y,z,tol), 2000 data points 

(200 Hz)  
%     tr() = myData.Trajectories.Labeled.Data(1,1,:) ;  
% Index for each marker 

  
iLFHD = find(contains(markers,'LFHD')); % Head 4 
iRFHD = find(contains(markers,'RFHD')); 
iLBHD = find(contains(markers,'LBHD')); 
iRBHD = find(contains(markers,'RBHD')); 

  
iLACR = find(contains(markers,'LACR')); % Trunk 11~ 
iRACR = find(contains(markers,'RACR')); 
iCLAV = find(contains(markers,'CLAV')); 
iRBAC = find(contains(markers,'RBAC')); 
iSTER = find(contains(markers,'STER')); 
iC7 = find(contains(markers,'C7'));  
iT10 = find(contains(markers,'T10')); 
iLASIS = find(contains(markers,'LASIS')); 
iRASIS = find(contains(markers,'RASIS')); 
iLPSIS = find(contains(markers,'LPSIS')); 
iRPSIS = find(contains(markers,'RPSIS')); 

  
iLUPA = find(contains(markers,'LUPA')); % Arms 22~ 
iRUPA = find(contains(markers,'RUPA')); 
iLUPP = find(contains(markers,'LUPP')); 
iRUPP = find(contains(markers,'RUPP')); 
iLUD = find(contains(markers,'LUD')); 
iRUD = find(contains(markers,'RUD')); 
iLLELB = find(contains(markers,'LLELB')); 
iRLELB = find(contains(markers,'RLELB')); 
iLMELB = find(contains(markers,'LMELB')); 
iRMELB = find(contains(markers,'RMELB')); 
iLFPA = find(contains(markers,'LFPA')); 
iRFPA = find(contains(markers,'RFPA')); 
iLFPP = find(contains(markers,'LFPP')); 
iRFPP = find(contains(markers,'RFPP')); 
iLFD = find(contains(markers,'LFD')); 
iRFD = find(contains(markers,'RFD')); 
iLWRA = find(contains(markers,'LWRA')); 
iRWRA = find(contains(markers,'RWRA')); 
iLWRB = find(contains(markers,'LWRB')); 
iRWRB = find(contains(markers,'RWRB')); 
iLMCP3 = find(contains(markers,'LMCP3')); 
iRMCP3 = find(contains(markers,'RMCP3')); 

  
iLMCP2 = find(contains(markers,'LMCP2'));  
iRMCP2 = find(contains(markers,'RMCP2')); 
iLMCP5 = find(contains(markers,'LMCP5')); 
iRMCP5 = find(contains(markers,'RMCP5')); 
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iLTHIPA = find(contains(markers,'LTHIPA')); % Legs 30 
iRTHIPA = find(contains(markers,'RTHIPA')); 
iLTHIPP = find(contains(markers,'LTHIPP')); 
iRTHIPP = find(contains(markers,'RTHIPP')); 
iLTHIDA = find(contains(markers,'LTHIDA')); 
iRTHIDA = find(contains(markers,'RTHIDA')); 
iLTHIDP = find(contains(markers,'LTHIDP')); 
iRTHIDP = find(contains(markers,'RTHIDP')); 
iLLKN = find(contains(markers,'LLKN')); 
iRLKN = find(contains(markers,'RLKN')); 
iLMKN = find(contains(markers,'LMKN')); 
iRMKN = find(contains(markers,'RMKN')); 
iLSHAPA = find(contains(markers,'LSHAPA')); 
iRSHAPA = find(contains(markers,'RSHAPA')); 
iLSHAPP = find(contains(markers,'LSHAPP')); 
iRSHAPP = find(contains(markers,'RSHAPP')); 
iLSHADA = find(contains(markers,'LSHADA')); 
iRSHADA = find(contains(markers,'RSHADA')); 
iLSHADP = find(contains(markers,'LSHADP')); 
iRSHADP = find(contains(markers,'RSHADP')); 
iLLANK = find(contains(markers,'LLANK')); 
iRLANK = find(contains(markers,'RLANK')); 
iLMANK = find(contains(markers,'LMANK')); 
iRMANK = find(contains(markers,'RMANK')); 
iLHE = find(contains(markers,'LHE')); 
iRHE = find(contains(markers,'RHE')); 
iLMTP1 = find(contains(markers,'LMTP1')); 
iRMTP1 = find(contains(markers,'RMTP1')); 
iLMTP5 = find(contains(markers,'LMTP5')); 
iRMTP5 = find(contains(markers,'RMTP5')); 

  

for frames = 1:nf % Coordinate origin translation to between two feet 
    om = [ (trj(iLMANK,1,frames)+trj(iRMANK,1,frames))/2 ,... 
        min(trj(iLMTP1,2,frames),trj(iRMTP1,2,frames)) ,... 
        (trj(iLMANK,3,frames)+trj(iRMANK,3,frames))/2 ] ; % origin of model 

coordinate 
end 

  
%% Kinematic (trajectory) data processing 
% Compute angular parameters of trunk 
theta_ASIS = permute( atan2d((trj(iLASIS,3,:)-trj(iRASIS,3,:)) , 

(trj(iLASIS,1,:)-trj(iRASIS,1,:))) , [3 2 1] ) ; % deg, ASIS line angle in 

the x-z plane 
theta_CS = permute( atan2d((trj(iCLAV,3,:)-trj(iSTER,3,:)) , 

(trj(iCLAV,1,:)-trj(iSTER,1,:))) , [3 2 1] ) ; % deg, CLAV-STER line angle 

in the x-z plane 
theta_FT = abs(theta_CS - theta_ASIS) ; % deg, front trunk roll angle in 

the frontal plane  

  
theta_PSIS = permute( atan2d((trj(iLPSIS,3,:)-trj(iRPSIS,3,:)) , 

(trj(iLPSIS,1,:)-trj(iRPSIS,1,:))) , [3 2 1] ) ; % deg, PSIS line angle in 

the x-z plane 
theta_C7T10 = permute( atan2d((trj(iC7,3,:)-trj(iT10,3,:)) , (trj(iC7,1,:)-

trj(iT10,1,:))) , [3 2 1] ) ; % deg, C7-T10 line angle in the x-z plane 
theta_BT = abs(theta_C7T10 - theta_PSIS) ; % deg, back trunk roll angle in 

the frontal plane 

  
% Compute velocity, acceleration from displacement 
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dis_z_LASIS = permute( trj(iLASIS,3,:) , [3 2 1] )./1000 ; % displacement 

from mm to m 
dis_z_RASIS = permute( trj(iRASIS,3,:) , [3 2 1] )./1000 ; 
dis_z_LPSIS = permute( trj(iLPSIS,3,:) , [3 2 1] )./1000 ; 
dis_z_RPSIS = permute( trj(iRPSIS,3,:) , [3 2 1] )./1000 ; 

  
lpf = 15 ; % Hz, Lowpass filter 
[b,a]=butter(4,lpf./(fs_cam./2),'low'); 

  
vel_z_LASIS = gradient( dis_z_LASIS , 1/fs_cam ) ;  
velf_z_LASIS = filtfilt(b,a,vel_z_LASIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_LASIS = gradient( velf_z_LASIS , 1/fs_cam ) ; % peak acc from force 

estimates = 17730/(654.5/9.81) = 26.53 m/s2  

  
vel_z_RASIS = gradient( dis_z_RASIS , 1/fs_cam ) ;  
velf_z_RASIS = filtfilt(b,a,vel_z_RASIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_RASIS = gradient( velf_z_RASIS , 1/fs_cam ) ; 

  
vel_z_LPSIS = gradient( dis_z_LPSIS , 1/fs_cam ) ;  
velf_z_LPSIS = filtfilt(b,a,vel_z_LPSIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_LPSIS = gradient( velf_z_LPSIS , 1/fs_cam ) ; 

  
vel_z_RPSIS = gradient( dis_z_RPSIS , 1/fs_cam ) ;  
velf_z_RPSIS = filtfilt(b,a,vel_z_RPSIS); % with filtfilt() 4-pole is 8-

pole 
acc_z_RPSIS = gradient( velf_z_RPSIS , 1/fs_cam ) ; 

  
figure (15) 
subplot(3,1,1) 
plot(t,dis_z_LASIS,'k-',t,dis_z_RASIS,'k-.',t,dis_z_LPSIS,'b--

',t,dis_z_RPSIS,'r:'); 
ylabel('Displacement ( m )'); xlabel('Time ( s )'); 
subplot(3,1,2) 
plot(t,velf_z_LASIS,'k-',t,velf_z_RASIS,'k-.',t,velf_z_LPSIS,'b--

',t,velf_z_RPSIS,'r:'); 
ylabel('Velocity ( m / s )'); xlabel('Time ( s )'); 
subplot(3,1,3) 
plot(t,acc_z_LASIS,'k-',t,acc_z_RASIS,'k-.',t,acc_z_LPSIS,'b--

',t,acc_z_RPSIS,'r:'); 
ylabel('Acceleration ( m / s^2 )'); xlabel('Time ( s )'); 
legend('z-LASIS','z-RASIS','z-LPSIS','z-RPSIS'); 

  
%% Force plate (FP) data - 3 force plates 

  
f1 = myData.Force(1).Force()' ; % N, force plate data: 0-10000 data points 

at 1000 Hz = 0-10 s 
f2 = myData.Force(2).Force()' ;  
f3 = myData.Force(3).Force()' ; 

  
f1 = downsample(f1,fs_fp/fs_cam) ; % N, force down-sampled to match 

trajectory at 200 Hz 
f1 = fillnan(f1) ; % fillnan() to fill all nan in each column 
f2 = downsample(f2,fs_fp/fs_cam) ; f2 = fillnan(f2) ; 
f3 = downsample(f3,fs_fp/fs_cam) ; f3 = fillnan(f3) ; 

  
m1 = myData.Force(1).Moment()' ; % Nm, moment 
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m2 = myData.Force(2).Moment()' ; 
m3 = myData.Force(3).Moment()' ; 

  
m1 = downsample(m1,fs_fp/fs_cam) ; % Nm, moment down-sampled to match 

trajectory at 200 Hz 
m1 = fillnan(m1) ; 
m2 = downsample(m2,fs_fp/fs_cam) ; m2 = fillnan(m2) ; 
m3 = downsample(m3,fs_fp/fs_cam) ; m3 = fillnan(m3) ; 

  
cop1 = myData.Force(1).COP()' ; % mm, centre of pressure 
cop2 = myData.Force(2).COP()' ; 
cop3 = myData.Force(3).COP()' ; 

  
cop1 = downsample(cop1,fs_fp/fs_cam) ; % mm, cop down-sampled to match 

trajectory at 200 Hz 
cop1 = fillnan(cop1) ; 
cop2 = downsample(cop2,fs_fp/fs_cam) ; cop2 = fillnan(cop2) ; 
cop3 = downsample(cop3,fs_fp/fs_cam) ; cop3 = fillnan(cop3) ; 

  
%% FP Step 1 check pose of all 3 force plates (FP): if needed inverse sign 

of X and Y axes FP data - Force, Moment, CoP 
% r_a = [-1 0 0 ; 0 -1 0 ; 0 0 1] ; % rotation matrix to rectify Qualysis 
% measurement from FP (flip signs of x and y) 2018-07-18 
% r_a = [1 0 0 ; 0 1 0 ; 0 0 1] ; % no rotation as 2018-07-01 
r_a = [-1 0 0 ; 0 1 0 ; 0 0 1] ; % flip x-axis only for force and moment 

but not COP: 

  
f1r = (r_a * f1')' ; % transformation using inner product with rotation 

matrix 
m1r = (r_a * m1')' ;  
cop1r = cop1 ; 
% cop1r = (r_a * cop1')' ; 

  
f2r = (r_a * f2')' ; % transformation using inner product with rotation 

matrix 
m2r = (r_a * m2')' ; 
cop2r = cop2 ; 
% cop2r = (r_a * cop2')' ; 

  
f3r = (r_a * f3')' ; % transformation using inner product with rotation 

matrix 
m3r = (r_a * m3')' ;  
cop3r = cop3 ; 
% cop3r = (1 * cop3')' ;  

  
%% FP Step 2 rectify FP3 beneath rigid seat due to seat height 

  
az0 = 0.58 ; % m, thickness of padding above sensor z- this is seat height 
My = m3r(:,2) ; Mx = m3r(:,1) ; 
Fx = f3r(:,1) ; Fy = f3r(:,2) ; Fz = f3r(:,3) ;  

  
% COPx = -(Myr/Fz) 
Myr = ( My - Fx * az0 ) ; % Nm, thickness rectified moment y- 
COPx = - ( Myr ./ Fz )*1000 ; % mm, thickness rectified COP x- 

  
% COPy = (Mxr/Fz) 
Mxr = ( Mx + Fy * az0 ) ; % thickness rectified moment x- 
COPy = ( Mxr ./ Fz ) * 1000 ; % mm, thickness rectified COP y- 
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m3r(:,1) = Mxr ; % Nm, rectified with thickness 
m3r(:,2) = Myr ; % Nm 
cop3r = [COPx COPy zeros(length(m3r),1)] ; % mm 

  
%% FP Step 3 rotation from lab coordinates to OpenSim model coordinates 
% After two steps: f1r, f2r, f3r, m1r, m2r, m3r, cop1r, cop2r, cop3r 

(number indicates FP) 
r_b = [1 0 0 ; 0 0 -1 ; 0 1 0] ; % rotation to OpenSim model coordinates 

2018-07-06 
% f1r = (r_b * f1r')' ; f2r = (r_b * f2r')' ; f3r = (r_b * f3r')' ; 
% m1r = (r_b * m1r')' ; m2r = (r_b * m2r')' ; m3r = (r_b * m3r')' ; 
% cop1r = (r_b * cop1r')' ; cop2r = (r_b * cop2r')' ; cop3r = (r_b * 

cop3r')' ; 

  
sw = mean(f3r(1:fs_cam*1,3)) ; % sitting weight on FP3 = average of first 1 

s of z-axis force  
% f3r(:,3) = f3r(:,3) - sw ; % remove static sitting weight 

  
%% FP Rectification display 

  
figure(11) % FP1 
subplot(2,3,1);plot(t,f1(:,1),'r--',t,f1(:,2),'b-',t,f1(:,3),'k-');  
% subplot(2,3,1),plot(t(1:end-3),f1(1:end-2,1),'r--',t(1:end-3),f1(1:end-

2,2),'b-',t(1:end-3),f1(1:end-2,3),'k-');  
xlabel('Time ( s )'); ylabel('Force ( N )'); title('Force VS Time (FP1) ') 
legend({'f_x','f_y','f_z'}); box on; grid on; 
subplot(2,3,4);plot(t,f1r(:,1),'r--',t,f1r(:,2),'b-',t,f1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 

  
subplot(2,3,2);plot(t,m1(:,1),'r--',t,m1(:,2),'b-',t,m1(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('Moment VS Time 

(FP1)') 
legend({'m_x','m_y','m_z'});  box on; grid on; 
subplot(2,3,5);plot(t,m1r(:,1),'r--',t,m1r(:,2),'b-',t,m1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 

  
subplot(2,3,3);plot(t,cop1(:,1),'r--',t,cop1(:,2),'b-',t,cop1(:,3),'k-');  
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('CoP VS Time (FP1)') 
legend({'cop_x','cop_y','cop_z'});  box on; grid on; 
subplot(2,3,6);plot(t,cop1r(:,1),'r--',t,cop1r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
figure(12) % FP2 
subplot(2,3,1);plot(t,f2(:,1),'r--',t,f2(:,2),'b-',t,f2(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Force ( N )'); title('Force VS Time (FP2) ') 
legend({'f_x','f_y','f_z'}); box on; grid on; 
subplot(2,3,4);plot(t,f2r(:,1),'r--',t,f2r(:,2),'b-',t,f2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 

  
subplot(2,3,2);plot(t,m2(:,1),'r--',t,m2(:,2),'b-',t,m2(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('Moment VS Time 

(FP2)') 
legend({'m_x','m_y','m_z'});  box on; grid on; 
subplot(2,3,5);plot(t,m2r(:,1),'r--',t,m2r(:,2),'b-',t,m2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 
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subplot(2,3,3);plot(t,cop2(:,1),'r--',t,cop2(:,2),'b-',t,cop2(:,3),'k-');  
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('CoP VS Time (FP2)') 
legend({'cop_x','cop_y','cop_z'});  box on; grid on; 
subplot(2,3,6);plot(t,cop2r(:,1),'r--',t,cop2r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
figure(13) % FP3 
subplot(2,3,1);plot(t,f3(:,1),'r--',t,f3(:,2),'b-',t,f3(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Force ( N )'); title('Force VS Time (FP3) ') 
legend({'f_x','f_y','f_z'}); box on; grid on; 
subplot(2,3,4);plot(t,f3r(:,1),'r--',t,f3r(:,2),'b-',t,f3r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); 
legend({'f_x (rec)','f_y (rec)','f_z'},'location','best'); box on; grid on; 

  
subplot(2,3,2);plot(t,m3(:,1),'r--',t,m3(:,2),'b-',t,m3(:,3),'k-');  
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('Moment VS Time 

(FP3)') 
legend({'m_x','m_y','m_z'});  box on; grid on; 
subplot(2,3,5);plot(t,m3r(:,1),'r--',t,m3r(:,2),'b-',t,m3r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); 
legend({'m_x (rec+thick)','m_y (rec+thick)','m_z'},'location','best'); box 

on; grid on; 

  
subplot(2,3,3);plot(t,cop3(:,1),'r--',t,cop3(:,2),'b-',t,cop3(:,3),'k-');  
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('CoP VS Time (FP3)') 
legend({'cop_x','cop_y','cop_z'});  box on; grid on; 
subplot(2,3,6);plot(t,cop3r(:,1),'r--',t,cop3r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); 
legend({'cop_x (rec+thick)','cop_y (rec+thick)'},'location','best'); box 

on; grid on; 

  
%% Three FPs - (1) Left foot; (2) Right foot; (3) Seat pan  

  
figure ( 21 ) 
set(gcf,'position',[10 5 700 800]); 

  
subplot(3,3,1);plot(t,f1r(:,1),'r--',t,f1r(:,2),'b-',t,f1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); title('FP1'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 
subplot(3,3,2);plot(t,m1r(:,1),'r--',t,m1r(:,2),'b-',t,m1r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('FP1'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 
subplot(3,3,3),plot(t,cop1r(:,1),'r--',t,cop1r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('FP1'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
subplot(3,3,4);plot(t,f2r(:,1),'r--',t,f2r(:,2),'b-',t,f2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Force ( N )'); title('FP2'); 
legend({'f_x (rec)','f_y (rec)','f_z'}); box on; grid on; 
subplot(3,3,5);plot(t,m2r(:,1),'r--',t,m2r(:,2),'b-',t,m2r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('FP2'); 
legend({'m_x (rec)','m_y (rec)','m_z'}); box on; grid on; 
subplot(3,3,6);plot(t,cop2r(:,1),'r--',t,cop2r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('FP2'); 
legend({'cop_x (rec)','cop_y (rec)'}); box on; grid on; 

  
subplot(3,3,7);plot(t,f3r(:,1),'r--',t,f3r(:,2),'b-',t,f3r(:,3),'k-'); 
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xlabel('Time ( s )'); ylabel('Force ( N )'); title('FP3'); 
legend({'f_x (rec)','f_y (rec)','f_z'},'location','best'); box on; grid on; 
subplot(3,3,8);plot(t,m3r(:,1),'r--',t,m3r(:,2),'b-',t,m3r(:,3),'k-'); 
xlabel('Time ( s )'); ylabel('Moment ( Nm )'); title('FP3'); 
legend({'m_x (rec+thick)','m_y (rec+thick)','m_z'},'location','best'); box 

on; grid on; 
subplot(3,3,9);plot(t,cop3r(:,1),'r--',t,cop3r(:,2),'b-'); 
xlabel('Time ( s )'); ylabel('CoP ( mm )'); title('FP3'); 
legend({'cop_x (rec+thick)','cop_y (rec+thick)'},'location','best'); box 

on; grid on; 

  
%% Display 3D force (x-y-z) and COP (x-y) 
% p0 = COP coordinate x-y-z(0s) in mm, p1 = force x-y-z in N but same scale 

as mm COP  

  
fp1 = (1 * myData.Force(1).ForcePlateLocation')' ; % Force-plate 1 rotation 

to model coord : 1 = no rotation, r_b = model coord rotation 
fp1x = fp1(:,1) ; fp1y = fp1(:,2) ; fp1z = fp1(:,3) ;  
fp2 = (1 * myData.Force(2).ForcePlateLocation')' ; % Force-plate 2 rotation 

to model coord 
fp2x = fp2(:,1) ; fp2y = fp2(:,2) ; fp2z = fp2(:,3) ;  
fp3 = (1 * myData.Force(3).ForcePlateLocation')' ; % Force-plate 2 rotation 

to model coord 
fp3x = fp3(:,1) ; fp3y = fp3(:,2) ; fp3z = fp3(:,3) ;  

  
for n = start/(1/fs_cam):gap:stop/(1/fs_cam) % frame range to be plotted 

Figure 31  

         
figure ( 31 )  
set(gcf,'position',[750 5 550 800]); % position of figure window on screen 

  
% fp3_p0 = [cop3r(n,1)+mean(fp3x) cop3r(n,2)+mean(fp3y) 

cop3r(n,3)+mean(fp3z)] ; % Coordinate (x y z) of the first point p0 
fp3_p0 = [cop3r(n,1)+mean(fp3x) cop3r(n,2)+mean(fp3y) 

cop3r(n,3)+mean(fp3z)+1000*az0] ; % Coordinate (x y z) of the first point 

p0 raised az0 for FP3 
fp3_p1 = fp3_p0 + f3r(n,:) ;    % Coordinate (x y z) of the second point p1 
vect3d(fp3_p0,fp3_p1) ; hold on ; 

  
fp2_p0 = [cop2r(n,1)+mean(fp2x) cop2r(n,2)+mean(fp2y) 

cop2r(n,3)+mean(fp2z)] ; % Coordinate (x y z) of the first point p0 
fp2_p1 = fp2_p0 + f2r(n,:) ;    % Coordinate (x y z) of the second point p1 
vect3d(fp2_p0,fp2_p1) ; hold on ; 

  
fp1_p0 = [cop1r(n,1)+mean(fp1x) cop1r(n,2)+mean(fp1y) 

cop1r(n,3)+mean(fp1z)] ; % Coordinate (x y z) of the first point p0 
fp1_p1 = fp1_p0 + f1r(n,:) ;    % Coordinate (x y z) of the second point p1 
vect3d(fp1_p0,fp1_p1) ; hold on ; 

  
% Trajectory data: 
% myData.Trajectories.Labeled.Data(1,1,:) ; 
% Data(67,4,2000), 67 markers, 4 channels (x,y,z,tol), 2000 data points 

(200 Hz)  

  
% Find upper body centroid: 
upper_x = mean([trj(iLFHD,1,n) trj(iRFHD,1,n) ... % Head 
                trj(iLBHD,1,n) trj(iRBHD,1,n) ... 
                trj(iLACR,1,n) trj(iRACR,1,n) ... % Trunk 
                trj(iRBAC,1,n) trj(iSTER,1,n) ... 



52 

 

                trj(iC7,1,n) trj(iT10,1,n) ... 
                trj(iLPSIS,1,n) trj(iRPSIS,1,n) ... 
                trj(iLASIS,1,n) trj(iRASIS,1,n) ...               
                trj(iLUPA,1,n) trj(iRUPA,1,n) ... % Arms 
                trj(iLUPP,1,n) trj(iRUPP,1,n) ...                 
                trj(iLUD,1,n) trj(iRUD,1,n) ... 
                trj(iLLELB,1,n) trj(iRLELB,1,n) ... 
                trj(iLMELB,1,n) trj(iRMELB,1,n) ... 
                trj(iLFPA,1,n) trj(iRFPA,1,n) ... 
                trj(iLFPP,1,n) trj(iRFPP,1,n) ...                 
                trj(iLFD,1,n) trj(iRFD,1,n) ...                 
                trj(iLWRA,1,n) trj(iRWRA,1,n) ... 
                trj(iLWRB,1,n) trj(iRWRB,1,n) ... 
                trj(iLMCP3,1,n) trj(iRMCP3,1,n) ]) ;  

  
upper_y = mean([trj(iLFHD,2,n) trj(iRFHD,2,n) ... % Head 
                trj(iLBHD,2,n) trj(iRBHD,2,n) ... 
                trj(iLACR,2,n) trj(iRACR,2,n) ... % Trunk 
                trj(iRBAC,2,n) trj(iSTER,2,n) ... 
                trj(iC7,2,n) trj(iT10,2,n) ... 
                trj(iLPSIS,2,n) trj(iRPSIS,2,n) ... 
                trj(iLASIS,2,n) trj(iRASIS,2,n) ...               
                trj(iLUPA,2,n) trj(iRUPA,2,n) ... % Arms 
                trj(iLUPP,2,n) trj(iRUPP,2,n) ...                 
                trj(iLUD,2,n) trj(iRUD,2,n) ... 
                trj(iLLELB,2,n) trj(iRLELB,2,n) ... 
                trj(iLMELB,2,n) trj(iRMELB,2,n) ... 
                trj(iLFPA,2,n) trj(iRFPA,2,n) ... 
                trj(iLFPP,2,n) trj(iRFPP,2,n) ...                 
                trj(iLFD,2,n) trj(iRFD,2,n) ...                 
                trj(iLWRA,2,n) trj(iRWRA,2,n) ... 
                trj(iLWRB,2,n) trj(iRWRB,2,n) ... 
                trj(iLMCP3,2,n) trj(iRMCP3,2,n) ]) ; 

  
upper_z = mean([trj(iLFHD,3,n) trj(iRFHD,3,n) ... % Head 
                trj(iLBHD,3,n) trj(iRBHD,3,n) ... 
                trj(iLACR,3,n) trj(iRACR,3,n) ... % Trunk 
                trj(iRBAC,3,n) trj(iSTER,3,n) ... 
                trj(iC7,3,n) trj(iT10,3,n) ... 
                trj(iLPSIS,3,n) trj(iRPSIS,3,n) ... 
                trj(iLASIS,3,n) trj(iRASIS,3,n) ...           
                trj(iLUPA,3,n) trj(iRUPA,3,n) ... % Arms 
                trj(iLUPP,3,n) trj(iRUPP,3,n) ...                 
                trj(iLUD,3,n) trj(iRUD,3,n) ... 
                trj(iLLELB,3,n) trj(iRLELB,3,n) ... 
                trj(iLMELB,3,n) trj(iRMELB,3,n) ... 
                trj(iLFPA,3,n) trj(iRFPA,3,n) ... 
                trj(iLFPP,3,n) trj(iRFPP,3,n) ...                 
                trj(iLFD,3,n) trj(iRFD,3,n) ...                 
                trj(iLWRA,3,n) trj(iRWRA,3,n) ... 
                trj(iLWRB,3,n) trj(iRWRB,3,n) ... 
                trj(iLMCP3,3,n) trj(iRMCP3,3,n) ]) ; 

             
for mk = 1:nmkr % s1static.mat only contains 66 markers  
    scatter3(trj(mk,1,n),trj(mk,2,n),trj(mk,3,n),100,... 
        'MarkerEdgeColor','k','MarkerFaceColor','g') ; hold on 
    

scatter3(upper_x,upper_y,upper_z,150,'MarkerEdgeColor','k','MarkerFaceColor

','r') ; hold on 
end 
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ax = gca; ax.Projection = 'perspective'; % Foreshortening to perceive depth 

in 2D representations of 3D objects 
% 'orthographic' as defualt to maintain correct relative dimensions of 

graphic objects 
view(0,10); %  
axis([-50 1000 -50 1500 -50 1500]) ; % frontal view 
ax = gca; ax.XTick = [ 0 500 1000 1500]; ax.YTick = [0 500 1000 1500]; 

ax.ZTick = [0 500 1000 1500]; 
title(['start - stop / total time = ' num2str(start) ' - ' num2str(stop) ' 

/ ' num2str(t(end)) '  at ' num2str(fs_cam) ' Hz' ]) ; 

  
fill3( fp1x , fp1y , fp1z , [0.85 0.85 0.85] ) ; hold on ; % FP1  
text((fp1x(2)+fp1x(1))/2+100,(fp1y(4)+fp1y(1))/2-250,10,'FP1','Color',[0 0 

1]) ; % FP1 
line([(fp1x(1)+fp1x(2))/2 (fp1x(3)+fp1x(4))/2] , [(fp1y(1)+fp1y(2))/2 

(fp1y(3)+fp1y(4))/2] ,... 
    [(fp1z(1)+fp1z(2))/2 (fp1z(3)+fp1z(4))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ;  
line([(fp1x(1)+fp1x(4))/2 (fp1x(2)+fp1x(3))/2] , [(fp1y(1)+fp1y(4))/2 

(fp1y(2)+fp1y(3))/2] ,... 
    [(fp1z(1)+fp1z(4))/2 (fp1z(2)+fp1z(3))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ; 

  
fill3( fp2x , fp2y , fp2z , [0.85 0.85 0.85] ) ; hold on ; % FP2  
text((fp2x(2)+fp2x(1))/2+100,(fp2y(4)+fp2y(1))/2-250,10,'FP2','Color',[0 0 

1]) ; % FP2 
line([(fp2x(1)+fp2x(2))/2 (fp2x(3)+fp2x(4))/2] , [(fp2y(1)+fp2y(2))/2 

(fp2y(3)+fp2y(4))/2] ,... 
    [(fp2z(1)+fp2z(2))/2 (fp2z(3)+fp2z(4))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ; 
line([(fp2x(1)+fp2x(4))/2 (fp2x(2)+fp2x(3))/2] , [(fp2y(1)+fp2y(4))/2 

(fp2y(2)+fp2y(3))/2] ,... 
    [(fp2z(1)+fp2z(4))/2 (fp2z(2)+fp2z(3))/2] , 'color' , [0 0 0] , 

'linewidth' , 1 ) ; hold on ; 

  
% FP3 raised by az0 
fill3( fp3x , fp3y , fp3z+1000*az0 , [0.85 0.85 0.85] ) ; hold on ; % FP3  
text((fp3x(2)+fp3x(1))/2+50,(fp3y(4)+fp3y(1))/2-

250,30+1000*az0,'rFP3','Color',[0 0 1]) ; % FP3 
line([(fp3x(1)+fp3x(2))/2 (fp3x(3)+fp3x(4))/2] , [(fp3y(1)+fp3y(2))/2 

(fp3y(3)+fp3y(4))/2] ,... 
    [(fp3z(1)+fp3z(2))/2+1000*az0 (fp3z(3)+fp3z(4))/2+1000*az0] , 'color' , 

[0 0 0] , 'linewidth' , 1 ) ; hold on ; 
line([(fp3x(1)+fp3x(4))/2 (fp3x(2)+fp3x(3))/2] , [(fp3y(1)+fp3y(4))/2 

(fp3y(2)+fp3y(3))/2] ,... 
    [(fp3z(1)+fp3z(4))/2+1000*az0 (fp3z(2)+fp3z(3))/2+1000*az0] , 'color' , 

[0 0 0] , 'linewidth' , 1 ) ; hold on ; 

  
% Upper body centroid vertical projection 
line([upper_x upper_x] , [upper_y upper_y] , [0 upper_z] , 'color' , [1 0 

0] , 'linewidth' , 1 , 'linestyle' , '--') ;  hold on ; 
w_up = mass*0.75*9.81 ;                     % N, upper body weight = 75% of 

body weight  
upc_p0 = [upper_x upper_y upper_z] ;        % Coordinate (x y z) of the 

first point p0 
upc_p1 = [upper_x upper_y upper_z-w_up] ;   % Coordinate (x y z) of the 

second point p1 
vect3d_red(upc_p0,upc_p1) ; hold on ; 
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% Head 
fill3( [trj(iLBHD,1,n) trj(iLFHD,1,n) trj(iRFHD,1,n) trj(iRBHD,1,n)],...  % 

head x 
        [trj(iLBHD,2,n) trj(iLFHD,2,n) trj(iRFHD,2,n) trj(iRBHD,2,n)],... % 

y 
        [trj(iLBHD,3,n) trj(iLFHD,3,n) trj(iRFHD,3,n) trj(iRBHD,3,n)],... % 

z 
       [0.5 0.5 0.5] ) ; hold on ; 

    
% Trunk 
line( [trj(iLACR,1,n) trj(iCLAV,1,n) trj(iSTER,1,n)],... 
      [trj(iLACR,2,n) trj(iCLAV,2,n) trj(iSTER,2,n)],... 
      [trj(iLACR,3,n) trj(iCLAV,3,n) trj(iSTER,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line( [trj(iCLAV,1,n) trj(iRACR,1,n) trj(iRBAC,1,n)],... 
      [trj(iCLAV,2,n) trj(iRACR,2,n) trj(iRBAC,2,n)],... 
      [trj(iCLAV,3,n) trj(iRACR,3,n) trj(iRBAC,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line( [trj(iLACR,1,n) trj(iC7,1,n) trj(iRACR,1,n)],... 
      [trj(iLACR,2,n) trj(iC7,2,n) trj(iRACR,2,n)],... 
      [trj(iLACR,3,n) trj(iC7,3,n) trj(iRACR,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
fill3( [trj(iLPSIS,1,n) trj(iLASIS,1,n) trj(iRASIS,1,n) 

trj(iRPSIS,1,n)],... 
       [trj(iLPSIS,2,n) trj(iLASIS,2,n) trj(iRASIS,2,n) 

trj(iRPSIS,2,n)],... 
       [trj(iLPSIS,3,n) trj(iLASIS,3,n) trj(iRASIS,3,n) trj(iRPSIS,3,n)], 

[0.5 0.5 0.5] ) ; hold on ; 

   
line([(trj(iLPSIS,1,n)+trj(iRPSIS,1,n))/2 trj(iT10,1,n)],...  
     [(trj(iLPSIS,2,n)+trj(iRPSIS,2,n))/2 trj(iT10,2,n)],...  
     [(trj(iLPSIS,3,n)+trj(iRPSIS,3,n))/2 trj(iT10,3,n)], 'color' , [0 0 0] 

, 'linewidth' , 2 ) ;  hold on ; 
line( [trj(iT10,1,n) trj(iSTER,1,n)],... 
      [trj(iT10,2,n) trj(iSTER,2,n)],... 
      [trj(iT10,3,n) trj(iSTER,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 ) 

; hold on ; 

  
% Arm left 
fill3( [trj(iLUPA,1,n) trj(iLUPP,1,n) trj(iLUD,1,n)],... 
       [trj(iLUPA,2,n) trj(iLUPP,2,n) trj(iLUD,2,n)],... 
       [trj(iLUPA,3,n) trj(iLUPP,3,n) trj(iLUD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLFPA,1,n) trj(iLFPP,1,n) trj(iLFD,1,n)],... 
       [trj(iLFPA,2,n) trj(iLFPP,2,n) trj(iLFD,2,n)],... 
       [trj(iLFPA,3,n) trj(iLFPP,3,n) trj(iLFD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLWRA,1,n) trj(iLWRB,1,n) trj(iLMCP3,1,n)],... 
       [trj(iLWRA,2,n) trj(iLWRB,2,n) trj(iLMCP3,2,n)],... 
       [trj(iLWRA,3,n) trj(iLWRB,3,n) trj(iLMCP3,3,n)], [0.5 0.5 0.5] ) ; 

hold on ;   
line([trj(iLMELB,1,n) trj(iLLELB,1,n) trj(iLACR,1,n)],...  
     [trj(iLMELB,2,n) trj(iLLELB,2,n) trj(iLACR,2,n)],...  
     [trj(iLMELB,3,n) trj(iLLELB,3,n) trj(iLACR,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ;  hold on ; 
line([trj(iLWRB,1,n) trj(iLLELB,1,n)],...  
     [trj(iLWRB,2,n) trj(iLLELB,2,n)],...  
     [trj(iLWRB,3,n) trj(iLLELB,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;  hold on ; 
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% Arm right 
fill3( [trj(iRUPA,1,n) trj(iRUPP,1,n) trj(iRUD,1,n)],... 
       [trj(iRUPA,2,n) trj(iRUPP,2,n) trj(iRUD,2,n)],... 
       [trj(iRUPA,3,n) trj(iRUPP,3,n) trj(iRUD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRFPA,1,n) trj(iRFPP,1,n) trj(iRFD,1,n)],... 
       [trj(iRFPA,2,n) trj(iRFPP,2,n) trj(iRFD,2,n)],... 
       [trj(iRFPA,3,n) trj(iRFPP,3,n) trj(iRFD,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRWRA,1,n) trj(iRWRB,1,n) trj(iRMCP3,1,n)],... 
       [trj(iRWRA,2,n) trj(iRWRB,2,n) trj(iRMCP3,2,n)],... 
       [trj(iRWRA,3,n) trj(iRWRB,3,n) trj(iRMCP3,3,n)], [0.5 0.5 0.5] ) ; 

hold on ;  
line([trj(iRMELB,1,n) trj(iRLELB,1,n) trj(iRACR,1,n)],...  
     [trj(iRMELB,2,n) trj(iRLELB,2,n) trj(iRACR,2,n)],...  
     [trj(iRMELB,3,n) trj(iRLELB,3,n) trj(iRACR,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ;  hold on ; 
line([trj(iRWRB,1,n) trj(iRLELB,1,n)],...  
     [trj(iRWRB,2,n) trj(iRLELB,2,n)],...  
     [trj(iRWRB,3,n) trj(iRLELB,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;   hold on ; 

  
% Leg left 
fill3( [trj(iLTHIPA,1,n) trj(iLTHIPP,1,n) trj(iLTHIDP,1,n) 

trj(iLTHIDA,1,n)],... 
       [trj(iLTHIPA,2,n) trj(iLTHIPP,2,n) trj(iLTHIDP,2,n) 

trj(iLTHIDA,2,n)],... 
       [trj(iLTHIPA,3,n) trj(iLTHIPP,3,n) trj(iLTHIDP,3,n) 

trj(iLTHIDA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iLSHAPA,1,n) trj(iLSHAPP,1,n) trj(iLSHADP,1,n) 

trj(iLSHADA,1,n)],... 
       [trj(iLSHAPA,2,n) trj(iLSHAPP,2,n) trj(iLSHADP,2,n) 

trj(iLSHADA,2,n)],... 
       [trj(iLSHAPA,3,n) trj(iLSHAPP,3,n) trj(iLSHADP,3,n) 

trj(iLSHADA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iLHE,1,n) trj(iLMTP1,1,n) trj(iLMTP5,1,n)],... 
       [trj(iLHE,2,n) trj(iLMTP1,2,n) trj(iLMTP5,2,n)],... 
       [trj(iLHE,3,n) trj(iLMTP1,3,n) trj(iLMTP5,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLHE,1,n) trj(iLMTP1,1,n) trj(iLMANK,1,n)],... 
       [trj(iLHE,2,n) trj(iLMTP1,2,n) trj(iLMANK,2,n)],... 
       [trj(iLHE,3,n) trj(iLMTP1,3,n) trj(iLMANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iLHE,1,n) trj(iLMTP5,1,n) trj(iLLANK,1,n)],... 
       [trj(iLHE,2,n) trj(iLMTP5,2,n) trj(iLLANK,2,n)],... 
       [trj(iLHE,3,n) trj(iLMTP5,3,n) trj(iLLANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 

  
line([trj(iLLANK,1,n) trj(iLLKN,1,n) trj(iLMKN,1,n)],... 
     [trj(iLLANK,2,n) trj(iLLKN,2,n) trj(iLMKN,2,n)],... 
     [trj(iLLANK,3,n) trj(iLLKN,3,n) trj(iLMKN,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line([trj(iLLKN,1,n) trj(iLASIS,1,n)],...  
     [trj(iLLKN,2,n) trj(iLASIS,2,n)],...  
     [trj(iLLKN,3,n) trj(iLASIS,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;  hold on ; 

  
% Leg right 
fill3( [trj(iRTHIPA,1,n) trj(iRTHIPP,1,n) trj(iRTHIDP,1,n) 

trj(iRTHIDA,1,n)],... 
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       [trj(iRTHIPA,2,n) trj(iRTHIPP,2,n) trj(iRTHIDP,2,n) 

trj(iRTHIDA,2,n)],... 
       [trj(iRTHIPA,3,n) trj(iRTHIPP,3,n) trj(iRTHIDP,3,n) 

trj(iRTHIDA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iRSHAPA,1,n) trj(iRSHAPP,1,n) trj(iRSHADP,1,n) 

trj(iRSHADA,1,n)],... 
       [trj(iRSHAPA,2,n) trj(iRSHAPP,2,n) trj(iRSHADP,2,n) 

trj(iRSHADA,2,n)],... 
       [trj(iRSHAPA,3,n) trj(iRSHAPP,3,n) trj(iRSHADP,3,n) 

trj(iRSHADA,3,n)], [0.5 0.5 0.5] ) ; hold on ; 
fill3( [trj(iRHE,1,n) trj(iRMTP1,1,n) trj(iRMTP5,1,n)],... 
       [trj(iRHE,2,n) trj(iRMTP1,2,n) trj(iRMTP5,2,n)],... 
       [trj(iRHE,3,n) trj(iRMTP1,3,n) trj(iRMTP5,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRHE,1,n) trj(iRMTP1,1,n) trj(iRMANK,1,n)],... 
       [trj(iRHE,2,n) trj(iRMTP1,2,n) trj(iRMANK,2,n)],... 
       [trj(iRHE,3,n) trj(iRMTP1,3,n) trj(iRMANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 
fill3( [trj(iRHE,1,n) trj(iRMTP5,1,n) trj(iRLANK,1,n)],... 
       [trj(iRHE,2,n) trj(iRMTP5,2,n) trj(iRLANK,2,n)],... 
       [trj(iRHE,3,n) trj(iRMTP5,3,n) trj(iRLANK,3,n)], [0.5 0.5 0.5] ) ; 

hold on ; 

    
line([trj(iRLANK,1,n) trj(iRLKN,1,n) trj(iRMKN,1,n)],... 
     [trj(iRLANK,2,n) trj(iRLKN,2,n) trj(iRMKN,2,n)],... 
     [trj(iRLANK,3,n) trj(iRLKN,3,n) trj(iRMKN,3,n)], 'color' , [0 0 0] , 

'linewidth' , 2 ) ; hold on ; 
line([trj(iRLKN,1,n) trj(iRASIS,1,n)],...  
     [trj(iRLKN,2,n) trj(iRASIS,2,n)],...  
     [trj(iRLKN,3,n) trj(iRASIS,3,n)], 'color' , [0 0 0] , 'linewidth' , 2 

) ;  hold on ; 
end 

  
%% Display FP3 and 8 trj 

  
figure ( 52 ) % Force and moment with loading rate 2019-02-08 
set(gcf,'position',[10 200 700 550]); 

  
subplot(3,1,1); 
h(1) = plot(t,f3r(:,1),'k-','linewidth',0.5); hold on 
h(2) = plot(t,f3r(:,2),'k:','linewidth',0.5); 
h(3) = plot(t,f3r(:,3),'k-','linewidth',1.5);  
ylabel('Force ( N )'); % xlabel('Time ( s )');  
legend(h(1:3),{'\itF_x','\itF_y','\itF_z'},'location','northeast'); box on; 

grid off; 
axis([0 10 -250 1750]) ;  
ax = gca; ax.YTick = [-250 0 250 500 750 1000 1250 1500 1750]; % ax.XTick = 

[0 500 1000 1500];  
title(['FP3    ' tName.name]); 

  
subplot(3,1,2); 
h(4) = plot(t,m3r(:,1),'k:','linewidth',0.5); hold on;  
h(5) = plot(t,m3r(:,2),'k-','linewidth',1.5); 
ylabel('Moment ( Nm )'); % xlabel('Time ( s )');  
legend(h(4:5),{'\itM_x','\itM_y'},'location','northeast'); box on; grid 

off; 
axis([0 10 -100 50]) ;  
ax = gca; ax.YTick = [-100 -50 0 50]; 

  
subplot(3,1,3); 
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h(6) = plot(t,theta_PSIS,'k-','linewidth',0.5); hold on 
h(7) = plot(t,theta_C7T10,'k:','linewidth',0.5); hold on 
h(8) = plot(t,theta_BT,'k-','linewidth',1.5);  
xlabel('Time ( s )'); ylabel('Angle ( degree )');  
legend(h(6:8),{'\it\theta_P_S_I_S','\it\theta_C_7_T_1_0','\it\theta_B_T'},'

location','northeast'); box on; grid off; 
axis([0 10 -30 120]) ;  
ax = gca; ax.YTick = [-30 0 30 60 90 120]; % ax.XTick = [0 500 1000 1500];  

  
figure ( 61 ) % Angular data 
set(gcf,'position',[750 5 700 800]); 

  
subplot(2,1,1); 
plot(t,theta_ASIS,'k-','linewidth',0.5); hold on 
plot(t,theta_CS,'k:','linewidth',0.5); hold on 
plot(t,theta_FT,'k-','linewidth',1.5);  
xlabel('Time ( s )'); ylabel('Angle ( degree )');  
legend({'\it\theta_A_S_I_S','\it\theta_C_S','\it\theta_F_T'},'location','no

rtheast'); box on; grid off; 
axis([0 10 -20 120]) ;  
ax = gca; ax.YTick = [-20 0 20 40 60 80 100 120]; % ax.XTick = [0 500 1000 

1500];  
% title('FP3'); 

  
subplot(2,1,2); 
plot(t,theta_PSIS,'k-','linewidth',0.5); hold on 
plot(t,theta_C7T10,'k:','linewidth',0.5); hold on 
plot(t,theta_BT,'k-','linewidth',1.5);  
xlabel('Time ( s )'); ylabel('Angle ( degree )');  
legend({'\it\theta_P_S_I_S','\it\theta_C_7_T_1_0','\it\theta_B_T'},'locatio

n','northeast'); box on; grid off; 
axis([0 10 -20 120]) ;  
ax = gca; ax.YTick = [-20 0 20 40 60 80 100 120]; % ax.XTick = [0 500 1000 

1500];  

  
% csvwrite('s1m1t1_t_force_angle.csv',[t' f3r m3r theta_ASIS theta_CS 

theta_FT theta_PSIS theta_C7T10 theta_BT]); % check data structure 

  
function [out] = fillnan(in) ; 
for i = 1:3 
    out(:,i) = fillmissing(in(:,i),'nearest'); 
end 
end" 

 

 


